Published online by Cambridge University Press: 06 March 2002
In this paper we study nonparametric estimation of regression quantiles for time series data by inverting a weighted Nadaraya–Watson (WNW) estimator of conditional distribution function, which was first used by Hall, Wolff, and Yao (1999, Journal of the American Statistical Association 94, 154–163). First, under some regularity conditions, we establish the asymptotic normality and weak consistency of the WNW conditional distribution estimator for α-mixing time series at both boundary and interior points, and we show that the WNW conditional distribution estimator not only preserves the bias, variance, and, more important, automatic good boundary behavior properties of local linear “double-kernel” estimators introduced by Yu and Jones (1998, Journal of the American Statistical Association 93, 228–237), but also has the additional advantage of always being a distribution itself. Second, it is shown that under some regularity conditions, the WNW conditional quantile estimator is weakly consistent and normally distributed and that it inherits all good properties from the WNW conditional distribution estimator. A small simulation study is carried out to illustrate the performance of the estimates, and a real example is also used to demonstrate the methodology.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.