Published online by Cambridge University Press: 16 April 2014
In this paper, we introduce a family of contrasts for parametric inference in ARCH models the volatility of which exhibits some degeneracy. We focus specifically on ARCH processes with a linear volatility (called LARCH processes), for which the Gaussian quasi-likelihood estimator may be inconsistent. Our approach generalizes that of Beran and Schützner (2009) and gives an interesting alternative to the WLSE used by Francq and Zakoïan (2010) for an autoregressive process with LARCH errors. The family of contrasts is indexed by a single parameter that controls the smoothness of an approximated quasi-likelihood function. Under mild conditions, the resulting estimators are shown to be strongly consistent and asymptotically normal. The optimal asymptotic variance is also given. For LARCH processes, an atypical result is obtained: under assumptions, we show that the limiting distribution of the estimators can be arbitrarily close to a Gaussian distribution supported on a line. Extensions to multivariate processes are also discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.