Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T18:55:11.011Z Has data issue: false hasContentIssue false

Desert Ecosystems: Their Resources in Space and Time

Published online by Cambridge University Press:  24 August 2009

Clifford S. Crawford
Affiliation:
Professor of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
James R. Gosz
Affiliation:
Professor of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.

Extract

The dynamics of desert ecosystems control levels of resources that are essential to the survival of desert biotas. Because precipitation is both low and relatively unpredictable in arid regions, the climates, topographies, and soils, of these areas present formidable constraints to resource availability in space and time. And for the same reason, the processes of production, consumption, decomposition, and nutrient-cycling in deserts are also highly irregular and difficult to predict with accuracy. For example, global models relating actual evapotranspiration to primary production and decomposition apply poorly in arid regions.

Surprisingly great amounts of carbon are stored in desert soils, particularly in caliche deposits which represent a major ‘sink’ of carbon from the atmosphere. In Arizona desert soils, inorganic carbon exceeds organic carbon by a factor of > 10. Direct use of organic carbon is made principally by organisms that break down desert litter and simultaneously cause relatively high rates of nitrogen mineralization. While nitrogen is traditionally considered deficient in arid environments, its flux is considerable because of high rates of gain by fixation and loss by denitrification and volatilization. Nitrogen accumulates in ‘islands of fertility’ beneath desert shrubs where it becomes relatively available because of (i) its high concentration in plant litter, and (ii) reduced activity of any aromatic modifiers that retard decomposition.

It is misleading in deserts to relate nutrient availability to yearly averages, as nutrients may become highly available following pulses of ‘effective’ precipitation. Moreover, mineralization and subsequent availability to plants of phosphorous, the ‘master element’ in nutrient cycling, are moderately independent of nitrogen mineralization and can proceed rapidly. Clearly, the case for nutrient deficiency in deserts may be overstated.

Consumption of primary production has varying effects on rates of resource availability in desert ecosystems. Generally weak regulation of primary production is predicted for consumers of green vegetation, except occasionally during early drought. Carnivores should exert variable controls over their prey, while pollinators, seed-eaters, and detritivores—most of which are strongly soil-associated—should have the greatest impacts on primary production and nutrient cycling.

Type
Main Papers
Copyright
Copyright © Foundation for Environmental Conservation 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayyad, M.A. & Ghabbour, S.I. (1977). Systems analysis of Mediterranean desert ecosystems of northern Egypt (SAMDENE). Environmental Conservation, 4, pp. 91101, illustr.Google Scholar
Beadle, N.C.W. (1959). Some aspects of ecological research in semi-arid Australia. Pp. 452–60 in Biogeography and Ecology in Australia (Ed. Keast, A. T., Crocker, R. L. & Cristian, C. S.). Dr. W. Junk Publ., Den Hague, Netherlands: 640 pp., illustr.CrossRefGoogle Scholar
Beadle, N.C.W. (1962). Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology, 43, pp. 281–6.CrossRefGoogle Scholar
Beadle, N.C.W. & Tchan, Y.T. (1955). Nitrogen economy in semi-arid plant communities, I: Environment and general considerations. Proc. Linn. Soc. N.S.W., 80, pp. 6270.Google Scholar
Bell, F.C. (1979). Precipitation. Pp. 373–92 in Arid Land Ecosystems: Structure, Functioning and Management, Vol. 1 (Ed. Goodall, D.W. & Perry, R.A.). (Int. Biol. Programme 16.) Cambridge University Press, Cambridge-London-New York-Melbourne: xxvii + 881 pp., illustr.Google Scholar
Binet, P. (1981). Short-term dynamics of minerals in arid ecosystems. Pp. 325–56 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xviii & 605 pp., illustr.Google Scholar
Briese, D.T. & Macauley, B.J. (1977). Physical structure of an ant community in semi-arid Australia. Aust. J. Ecology, 2, pp. 107–20.CrossRefGoogle Scholar
Brown, J.H. & Davidson, D.W. (1977). Competition between seed-eating rodents and ants in desert ecosystems. Science, 196, pp. 880–2.Google Scholar
Brown, J.H., Reichman, O.J. & Davidson, D.W. (1979). Granivory in desert ecosystems. Ann. Rev. Ecol. Syst., 10, pp. 201–27.CrossRefGoogle Scholar
Charley, J.L. (1972). The role of shrubs in nutrient cycling. Pp. 182203 in Wildland Shrubs — their Biology and Utilization (Ed. McKell, Cm., Blaisdell, J.P. & Goodwin, J.R.). U.S. Dept. Agric. Forest Service Gen. Tech. Rep. INT-1, Washington, DC, USA: 500 pp.Google Scholar
Chew, R.M. & Chew, A.E. (1970). Energy relationships of the mammals of a desert shrub (Larrea tridentata) community. Ecol. Monogr., 40, pp. 121.Google Scholar
Cline, J. F. & Rickard, W. H. (1973). Herbage yields in relation to soil water and assimilated nitrogen. J. Range Management, 26, pp. 296–8.Google Scholar
Cole, C.V. & Heil, R.D. (1981). Phosphorous effects on terrestrial nitrogen. Pp. 363–74 in Terrestrial Nitrogen Cycles: Processes, Ecosystem Strategies and Management Impacts (Ed. Clark, F.E. & Rosswall, T.). (Ecological Bulletins [Stockholm] No 33.). Swedish Natural Science Research Council, Stockholm Sweden: 714 pp., illustr.Google Scholar
Cole, G.A. (1968). Desert limnology. Pp. 423–86 in Desert Biology, Vol. I (Ed. Brown, W.G. Jr). Academic Press, New York-London: xiv + 601 pp., illustr.CrossRefGoogle Scholar
Comanor, P.L. & Staffeldt, E.E. (1978). Decomposition of plant litter in two western North American deserts. Pp. 3149 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Crawford, C.S. (1979). Desert detritivores: A review of lifehistory patterns and trophic roles. J. Arid Environments, 2, pp. 31–12.Google Scholar
Crawford, C.S. (1981). Biology of Desert Invertebrates. Springer-Verlag, Berlin-Heidelberg-New York: xvi + 314 pp., illustr.CrossRefGoogle Scholar
Davidson, D.W., Brown, J.H. & Inouye, R.S. (1980). Competition and the structure of granivore communities. BioScience, 30, pp. 233–8.CrossRefGoogle Scholar
El-Ayouty, E.Y., Ghabbour, S.I. & El-Sayed, N.A.M. (1978). Rôle of litter and the excreta of desert fauna in the nitrogen status of desert soils. J. Arid Environments, 1, pp. 145–55.CrossRefGoogle Scholar
Elkins, N.Z., Steinberger, Y. & Whitford, W.G. (1982). Factors affecting the applicability of the AET model for decomposition in arid environments. Ecology, 63, pp. 579–80.Google Scholar
Evenari, M. (1981). Synthesis. Pp. 555–91 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
Farnsworth, R.B., Romney, E.M. & Wallace, A. (1978). Nitrogen fixation by microfloral-higher plant associations in arid to semiarid environments. Pp. 17–9 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Fletcher, J.E., Sorensen, D.L. & Porcella, D.B. (1978). Erosional transfer of nitrogen in desert ecosystems. Pp. 171–81 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Freckman, D.W. (1978). Ecology of anhydrobiotic soil nematodes. Pp. 345357 in Dried Biological Systems (Ed. Crowe, J.H. & Clegg, J.S.). Academic Press, London & New York [Not available for checking.]CrossRefGoogle Scholar
Friedman, J. & Stein, Z. (1980). The influence of seed-dispersal mechanisms on the dispersion of Anastatica hierochuntica (Cruciferae) in the Negev Desert, Israel. J. Ecology, 68, pp. 4350, illustr.Google Scholar
Fuchs, M. (1979). Atmospheric transport processes above aridland vegetation. Pp. 393408 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 1 (Ed. Goodall, D. W. & Perry, R.A.). (International Biological Programme 16.). Cambridge University Press, Cambridge-London-New York-Melbourne: xxvii + 881 pp., illustr.Google Scholar
Ghabbour, S.I. & Mikhail, W.S.A. (1978). Ecology of soil fauna of Mediterranean desert ecosystems in Egypt, II: Soil mesofauna associated with Thymelaea hirsuta. Rev. Ecol. Biol. Sol., 15, pp. 333–9.Google Scholar
Ghabbour, S.I. & Shakir, S.H. (1980). Ecology of soil fauna in Mediterranean desert ecosystems in Egypt, III-Analysis of Thymelaea mesofauna populations at the Mariut frontal plain. Rev. Ecol. Biol. Sol, 17, pp. 327352.Google Scholar
Goodall, D.W. & Perry, R.A. (Ed.). (1979). Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 1, (International Biological Programme 16.) Cambridge University Press, Cambridge-London-New York-Melbourne: xxvii + 881 pp., illustr.Google Scholar
Goodall, D.W. & Perry, R.A. (Eds.). (1981). Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2. (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
Gosz, J.R. (1980). Nutrient budget studies for forests along an elevational gradient in New Mexico. Ecology, 61, pp. 515–21.Google Scholar
Gosz, J.R. (1981). Nitrogen cycling in coniferous ecosystems. Pp. 405–26 in Terrestrial Nitrogen Cycles: Processes, Ecosystem Strategies and Management Impacts (Ed. Clark, F. E. & Rosswall, T.). Ecological Bulletins [Stockholm] No. 33, Swedish Natural Science Research Council, Stockholm, Sweden: 714 pp., illustr.Google Scholar
Goudie, A. & Wilkinson, J. (1977). The Warm Desert Environment. Cambridge University Press, Cambridge-London-New York-Melbourne: 88 pp., illustr.Google Scholar
Graetz, R.D. (1981). Plant-animal interactions. Pp. 85108 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
Hadley, N.F. & Szarek, S.R. (1981). Productivity in desert ecosystems. BioScience, 31, pp. 747–52.CrossRefGoogle Scholar
Hawke, S.D. & Farley, R.D. (1973). Ecology and behaviour of the desert burrowing cockroach, Arenivaga sp. (Dictyoptera, Polyphagidae). Oecologia, 11, pp. 263–79.Google Scholar
Jansson, H.-B. & Nordbring-Hert, B. (1979). Attraction of nematodoes to living mycelium of nematophagous Fungi. J. Gen. Microbiol, 112, pp. 8993.CrossRefGoogle Scholar
Junge, C.E. (1958). The distribution of ammonia and nitrate in rainwater over the United States. Trans. Am. Geophys. Union, 39, pp. 241–8.Google Scholar
Larsen, T. & Larsen, K. (1980). Butterflies of Oman. John Bartholomew & Sons, Edinburgh, Scotland, UK: 80 pp., illustr.Google Scholar
Lieth, H. & Box, E.O. (1972). Evapotranspiration and primary productivity; C.W. Thornthwaite Memorial Model. Publ. Climatol., 25, pp. 3746.Google Scholar
Likens, G.E., Bormann, F.H., Pierce, R.S., Eaton, J.S. & Johnson, N.M. (1977). Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York-Heidelberg-Berlin: ix + 146 pp., illustr.CrossRefGoogle Scholar
Logan, R.F. (1968). Causes, climates, and distribution of deserts. Pp. 2150 in Desert Biology, Vol. 1 (Ed. Brown, G.W. Jr). Academic Press, London & New York: xiv + 601 pp., illustr.CrossRefGoogle Scholar
Louw, G.N. & Seely, M.K. (1982). Ecology of Desert Organisms. Longman, London & New York: 194 pp., illustr.Google Scholar
Ludwig, J.A. (1977). Distributional adaptations of rootsystems in desert environments. Pp. 8591 in The Belowground Symposium: A Synthesis of Plant-Associated Processes (Ed. Marshall, J.K.). Science Series No. 26, Range Science Department, Colorado State University, Fort Collins, Colorado, USA: 351 pp., illustr.Google Scholar
Ludwig, J.A. & Whitford, W.G. (1981). Short-term water and energy flow in desert ecosystems. Pp. 271–99 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii & 605 pp., illustr.Google Scholar
Mabry, T.J., Hunziker, J.H. & Difeo, D.R. Jr (Ed.). (1977). Creosote Bush—Biology and Chemistry of Larrea in New World Deserts. (US/IBP Synthesis Ser. 6.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xvi + 284 pp., illustr.Google Scholar
McGinnies, W.G. (1979). General description of desert areas. Pp. 519 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 1 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 16.) Cambridge University Press, Cambridge-London-New York-Melbourne: xxvii + 881 pp., illustr.Google Scholar
MacGregor, A.N. & Johnson, D.E. (1971). Capacity of desert algal crusts to fix atmospheric nitrogen. Soil Sci. Soc. Proc., 35, pp. 843–4.CrossRefGoogle Scholar
Mack, R.N. (1971). Mineral Cycling in Artemisia tridentata. Doctoral Thesis, Washington State University, Pullman, Washington, USA: 106 pp. (mimeogr.)Google Scholar
MacMahon, J. A. (1981). Introduction. Pp. 263–9 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
Meentemeyer, V. (1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, pp. 465–72.Google Scholar
Meentemeyer, V., Box, E. & Thompson, R. (1982). World patterns and amounts of terrestrial plant litter production. BioScience, 32, pp. 125–8.Google Scholar
Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Ann. Rev. Ecol. Syst., 4, pp. 2551.CrossRefGoogle Scholar
Noy-Meir, I. (1974). Desert ecosystems: Higher trophic levels. Ann. Rev. Ecol. Syst., 5, pp. 195213.Google Scholar
Noy-Meir, I. (19791980). Structure and function of desert ecosystems. Israel J. Bot., 28, pp. 119, 2 figs.Google Scholar
O'Brien, R.T. (1978). Proteolysis and ammonification in desert soils. Pp. 50–9 in Nitrogen in Desert Ecosystems (Ed. West, N. E. & Skujins, J. J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Orians, G.H. & Solbrig, O.T. (Ed.). (1977). Convergent Evolution in Warm Deserts. (US/IBP Synthesis Ser. 3.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: ix + 333 pp., illustr.Google Scholar
Pauli, F. (1964). Soil fertility problems in arid and semi-arid lands. Nature (London), 204, pp. 1286–8.Google Scholar
Péfaur, J.E. (1981). Composition and phenology of epigeic animal communities in the Lomas of southern Peru. J. Arid Environments 4, pp. 3142.CrossRefGoogle Scholar
Petrov, M.P. (1976). Deserts of the World. (Israel Program for Scientific Translations, Jerusalem.) John Wiley & Sons, New York & Toronto: viii + 447 pp., illustr.Google Scholar
Polis, G.A. (1980). The effect of cannibalism on the demography and activity of a natural population of desert scorpions. Behav. Ecol. Sociobiol., 7, pp. 2535.CrossRefGoogle Scholar
Redfield, A.C. (1958). The biological control of chemical factors in the environment. Am. Scientist, 46, pp. 205–21.Google Scholar
Reichman, O. J., Prakash, I. & Roig, V. (1979). Food selection and consumption. Pp. 681716 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 1 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 16.) Cambridge University Press, Cambridge-London-New York-Melbourne: xxvii + 881 pp., illustr.Google Scholar
Rodin, L.E. (1981). Primary productivity. Pp. 169–98 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
Rodin, L.E. & Bazilevich, N.I. (1965). Production and Mineral Cycling in Terrestrial Vegetation. (English translation by Fogg, G.E., 1967). Oliver & Boyd, Edinburgh, Scotland, UK: ix + 288 pp., illustr.Google Scholar
Rosenzweig, M.L. (1968). Net primary productivity of terrestrial communities: prediction from climatological data. Amer. Nat., 102, pp. 6774.Google Scholar
Rychert, R.C. & Skujins, J. (1974). Nitrogen fixation by bluegreen Algae-lichen crusts in the Great Basin Desert. Soil Sci. Soc. Am. Proc., 38, pp. 768–71.Google Scholar
Rychert, R. [C.], Skujins, J. & Porcella, D. (1978). Nitrogen fixation by lichens and free-living microorganisms in deserts. Pp. 2030 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Sammis, T.W. & Gay, L.W. (1979). Evapotranspiration from an arid zone plant community. J. Arid Environments, 2, pp. 313–21.CrossRefGoogle Scholar
Santos, P.F., Phillips, J. & Whitford, W.G. (1981). The role of mites and nematodes in early stages of buried-litter decomposition in a desert. Ecology, 62, pp. 664–9.Google Scholar
Schlesinger, W.H. (1977). Carbon balance in terrestrial detritus. Ann. Rev. Ecol. Syst., 8, pp. 5181.Google Scholar
Schlesinger, W. H. (1982). Carbon storage in the caliche of arid soils: A case-study from Arizona. Soil Science, 133, pp. 247–55.CrossRefGoogle Scholar
Seely, M.K., Devos, M.P. & Louw, G.N. (1977). Fog imbibition, satellite fauna, and unusual leaf structure, in a Namib Desert dune plant, Trianthema hereroensis. S. Afr. J. Science 73, pp. 169–72.Google Scholar
Seely, M.K. & Louw, G.N. (1980). First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J. Arid Environments, 3, pp. 2554.Google Scholar
Shachak, M., Safriel, U.N. & Hunum, R. (1981). An exceptional event of predation on desert snails by migratory thrushes in the Negev Desert, Israel. Ecology, 62, pp. 1441–9.CrossRefGoogle Scholar
Simpson, B.B. (Ed.) (1977). Mesquite — Its Biology in Two Desert Scrub Ecosystems. (US/IBP Synthesis Ser. 4.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xix + 250 pp., illustr.Google Scholar
Simpson, B.B., Neff, J.L. & Moldenke, A.R. (1977 a). Prosopis flowers as a resource. Pp. 84107 in Mesquite-Its Biology in Two Desert Scrub Ecosystems (Ed. Simpson, B.B.). (US/IBP Synthesis Ser. 4.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xix + 250 pp., illustr.Google Scholar
Simpson, B.B., Neff, J.L. & Moldenke, A.R. (1977 b). Reproductive systems of Larrea. Pp. 92114 in Creosote Bush—Biology and Chemistry of Larrea in New World Deserts (Ed. Mabry, T.J., Hunziker, J.H. & Difeo, D.R. Jr). (US/IBP Synthesis Ser. 6.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xvi + 284 pp., illustr.Google Scholar
Skujins, J. (1981). Nitrogen cycling in arid ecosystems. Pp. 477–91 in Terrestrial Nitrogen Cycles: Processes, Ecosystem Strategies and Management Impacts (Ed. Clark, F.E. & Rosswall, T.). (Ecological Bulletins [Stockholm] No 33.) Swedish Natural Science Research Council, Stockholm, Sweden: 714 pp., illustr.Google Scholar
Skujins, J. & Trujillo Y Fulgham, P. (1978). Nutrification in Great Basin desert soils. Pp. 6074 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Soholt, L.F. (1973). Consumption of primary production by a population of Kangaroo Rats (Dipodomys merriami) in the Mojave Desert. Ecol. Monogr., 43, pp. 357–76.Google Scholar
Stark, N. (1973). Nutrient cycling in a desert ecosystem. Bull. Ecol. Soc. Am., 54, p. 21.Google Scholar
Swift, M.J., Heal, O.W. & Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley arid Los Angeles: xii + 372 pp., illustr.CrossRefGoogle Scholar
Taylor, E.C. (1979). Seasonal distribution and abundance of Fungi in two desert grassland communities. J. Arid Environments, 2, pp. 295312.CrossRefGoogle Scholar
Taylor, E.C. (in press). Fungal preference by Orthoporus ornatus (Girard: Spirostreptidae), a desert millipede. Pedobiologia.Google Scholar
Taylor, E.C. & Crawford, C.S. (in press). Microbial gut symbionts and desert detritivores. Scientific Reviews on Arid Zone Research.Google Scholar
Trumble, H.C. & Woodroffe, K. (1954). The influence of climatic factors on the reaction of desert shrubs to grazing by sheep. Pp. 129–47 in Biology of Deserts (Ed. Cloudsley-Thompson, J.L.). Institute of Biology, London, England, UK: 223 pp., illustr.Google Scholar
Turner, R.M., Alcorn, S.M. & Olin, G. (1969). Mortality of transplanted Saguaro seedlings. Ecology, 50, pp. 835–44.Google Scholar
Wagner, F.H. & Graetz, R.D. (1981). Animal-animal interactions. Pp. 5183 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
Wallace, A., Romney, E.M. & Hunter, R.B. (1978). Nitrogen cycle in the northern Mojave Desert: Implications and predictions. Pp. 207–18 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
Webb, W., Szarek, S., Lauenroth, W., Kinerson, R. & Smith, M. (1978). Primary productivity and water use in native forests, grassland and desert ecosystems. Ecology, 59, pp. 1239–47.Google Scholar
West, N.E. (1978). Physical inputs of nitrogen to desert ecosystems. Pp. 165–70 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Penn.: xv + 307 pp.Google Scholar
West, N.E. (1979). Formation, distribution and function of plant litter in desert ecosystems. Pp. 647–59 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 1 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 16.) Cambridge University Press, Cambridge-London-New York-Melbourne: xxvii + 881 pp., illustr.Google Scholar
West, N.E. (1981). Nutrient cycling in desert ecosystems. Pp. 301–24 in Arid-Land Ecosystems: Structure, Functioning and Management, Vol. 2 (Ed. Goodall, D.W. & Perry, R.A.). (International Biological Programme 17.) Cambridge University Press, Cambridge-London-New York-Melbourne: xvii + 605 pp., illustr.Google Scholar
West, N.E. & Klemmedson, J.O. (1978). Structural distribution of nitrogen in desert ecosystems. Pp. 116 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, USA: xv + 307 pp.Google Scholar
West, N.E. & Skujins, J.J. (Ed.) (1978). Nitrogen in Desert Ecosystems. (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Penn.: xv + 307 pp.Google Scholar
Westerman, R.L. & Tucker, T.C. (1978). Denitrification in desert soils. Pp. 75106 in Nitrogen in Desert Ecosystems (Ed. West, N.E. & Skujins, J.J.). (US/IBP Synthesis Ser. 9.) Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania: xv + 307 pp.Google Scholar
Whitford, W.G. (1978). Foraging in seed-harvester ants Pogonomyrmex spp. Ecology, 59, pp. 185–9.CrossRefGoogle Scholar
Whitford, W.G. & Bryant, M. (1979). Behavior of a predator and its prey: The Horned Lizard (Phrynosoma cornutum) and harvester ants (Pogonomyrmex spp.). Ecology, 60, pp. 689–94.Google Scholar
Whitford, W.G., Meentemeyer, V., Seasted, T.R., Cromack, K. Jr, Crossley, D.A. Jr, Santos, P., Todd, R.L. & Awade, J. B. (1981 a). Exceptions to the AET model: Deserts and clear-cut forest. Ecology, 62, pp. 275–7.CrossRefGoogle Scholar
Whitford, W.G., Freckman, D.W., Elkins, N.Z., Parker, L.W., Parmalee, R., Phillips, J. & Tucker, S. (1981 b). Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biol. Biochem., 13, pp. 417–25.Google Scholar
Whittaker, R.H. (1970). Communities and Ecosystems. Collier-Macmillan, London, England, UK: vi+ 162 pp., illustr.Google Scholar
Wright, H.W. (1968). Natural environment of early food production North of Mesopotamia. Science, 161, pp. 334–9.Google Scholar
Yom-Tov, Y. (1970). The effect of predation on the population densities of some desert snails. Ecology, 51, pp. 907–11.Google Scholar