Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T10:43:30.654Z Has data issue: false hasContentIssue false

Effects of Stratospheric Ozone Depletion on Marine Organisms

Published online by Cambridge University Press:  24 August 2009

Robert C. Worrest
Affiliation:
Office of Research and Development (RD-682), US Environmental Protection Agency, 401 M Street, SW, Washington, DC 20460, USA
Donat-P. Häder
Affiliation:
Institut für Botanik und Pharmazeutische Biologie der Friedrich-Alexander-Universität, Staudtstrasse 5, D-8520 Erlangen, Federal Republic of Germany.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications & Reports
Copyright
Copyright © Foundation for Environmental Conservation 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Damkaer, D.M. (1982). Possible influence of solar UV radiation in the evolution of marine zooplankton. Pp. 701–6 in The Role of Solar Ultraviolet Radiation in Marine Ecosystems (Ed. Calkins, J.). Plenum Press, New York, NY, USA: xvi + 724 pp., illustr.CrossRefGoogle Scholar
Damkaer, D.M. & Dey, D.B. (1983). UV damage and photoreactivation potentials of larval shrimp. Pandalus platyceros. and adult euphausiids. Thysanoessa raschii. Oecoloqia, 60, pp. 169–75.Google ScholarPubMed
Damkaer, D.M., Dey, D.B. & Heron, G.A. (1981). Dose/doserate responses of shrimp larvae to UV-B radiation. Oecologia, 48, pp. 178–82.CrossRefGoogle ScholarPubMed
Dey, D.B., Damkaer, D.M. & Heron, G.A. (1988). UV-B dose/doserate responses of seasonally abundant copepods of Puget Sound. Oecologia, 76, pp. 321–9.CrossRefGoogle ScholarPubMed
Döhler, G. (1985). Effect of UV-B radiation.(290–320 nm) on the nitrogen metabolism of several marine diatoms. J. Plant Physiol, 118, pp. 391400.CrossRefGoogle Scholar
Döhler, G., Biermann, I. & Zink, J. (1986). Impact of UV-B radiation on photosynthetic assimilation of 14C-bicarbonate and inorganic 15N-compounds by Cyanobacteria. Z. Naturforsch., 41c, pp. 426–32.CrossRefGoogle Scholar
Döhler, G., Worrest, R.C., Biermann, I. & Zink, J. (1987). Photosynthetic 14CO2 fixation and 15N-ammonia assimilation during UV-B radiation of Lithodesmium variabile. Physiol. Plantarum, 70, pp. 511–5.CrossRefGoogle Scholar
Häder, D.-P. (1988). Ecological consequences of photomovement in microorganisms. J. Photochem. Photobiol. B: Biol., 1, pp. 385414.CrossRefGoogle Scholar
Häder, D.-P. & Griebenow, K. (1988). Orientation of the green flagellate. Euglena gracilis, in a vertical column of water. FEMS Microbiol. Ecol., 53, pp. 159–67.CrossRefGoogle Scholar
Häder, D.-P. & Häder, M.A. (1988 a). Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation. Arch. Microbiol., 150, pp. 20–5.CrossRefGoogle Scholar
Häder, D.-P. & Häder, M.A. (1988 b). Ultraviolet-B inhibition of motility in green and dark bleached Euglena gracilis. Current Microbiol., 17, pp. 215–20.CrossRefGoogle Scholar
Häder, D.-P. & Häder, M.A. (1989). Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates. Environ. Exp. Bot., 29, pp. 273–82.CrossRefGoogle Scholar
Häder, D.-P., Watanabe, M. & Furuya, M. (1986). Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation. Plant Cell Physiol., 27, pp. 887–94.CrossRefGoogle Scholar
Hardy, J.T. (1982). The sea surface microlayer: biology, chemistry, and anthropogenic enrichment. Prog. Occanogr., 11, pp. 307–28.CrossRefGoogle Scholar
Houghton, R.A. & Woodwell, G.M. (1989). Global climatic change. Sci. Amer., 260, pp. 3644.CrossRefGoogle Scholar
Hunter, J.R., Kaupp, S.E. & Taylor, J.H. (1982). Assessment of effects of UV radiation on marine fish larvae. Pp. 459–97 in The Role of Solar Ultraviolet Radiation in Marine Ecosystems (Ed. Calkins, J.). Plenum, Press, New York, NY, USA: xvi + 724 pp., illustr.CrossRefGoogle Scholar
Kelly, J.R. (1986). How might enhanced levels of solar UV-B radiation affect marine ecosystems? Pp. 237–51 in Effects of Changes in Stratospheric Ozone and Global Climate, Vol. 2: Stratospheric Ozone (Ed. Titus, J.G.). United Nations Environment Programme and U.S. Environmental Protection Agency, Washington, DC, USA: vii + 319 pp., illustr.Google Scholar
Nultsch, W. & Häder, D.-P. (1988). Photomovement in motile microorganisms, II. Photochem. Photobiol., 47, pp. 837–69.CrossRefGoogle ScholarPubMed
Siebeck, O. & Böhm, U. (1987). Untersuchungen zur Wirkung der UV-B-Strahlung auf kleine Wassertiere. BPT-Bericht 1/87, Gesellschaft für Strahlen- und Umweltforschung, München. Federal Republic of Germany. [Not available for checking.]Google Scholar
USEPA [US Environmental Protection Agency] (1987). An assessment of the effects of ultraviolet-B radiation on aquatic organisms. Pp. (12) 1–33 in Assessing the Risks of Trace Gases That Can Modify the Stratosphere. EPA 400/1–87/001C. USA: xxxii + 632 pp., illustr.Google Scholar
Worrest, R.C. (1982). Review of literature concerning the impact of UV-B radiation upon marine organisms. Pp. 429–57 in The Role of Solar Ultraviolet Radiation in Marine Ecosrsteins (Ed. Calkins, J.). Plenum Press, New York, NY, USA: xvi + 724 pp., illustr.CrossRefGoogle Scholar
Worrest, R.C. (1986). The effect of solar UV-B radiation on aquatic systems: an overview. Pp. 175–91 in Effects of Changes in Stratospheric Ozone and Global Climate. Vol. I: Overview (Ed. Titus, J.G.). United Nations Environment Programme, Nairobi, Kenya, and US Environmental Protection Agency, Washington, DC, USA: vii + 379 pp., illustr.Google Scholar