Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T23:17:47.625Z Has data issue: false hasContentIssue false

Using underwater video to assess megabenthic community vulnerability to trawling in the Grande Vasière (Bay of Biscay)

Published online by Cambridge University Press:  16 October 2017

LAURÈNE MÉRILLET*
Affiliation:
UMR 7204 MNHN-UPMC-CNRS Centre d'Ecologie et des Sciences de la Conservation, 43 rue Buffon, 75005 Paris, France Ifremer, Unité Sciences et Technologies Halieutiques, Laboratoire de Technologie et Biologie Halieutique, 8 rue François Toullec, 56100 Lorient, France
MAUD MOUCHET
Affiliation:
UMR 7204 MNHN-UPMC-CNRS Centre d'Ecologie et des Sciences de la Conservation, 43 rue Buffon, 75005 Paris, France
MARIANNE ROBERT
Affiliation:
Ifremer, Unité Sciences et Technologies Halieutiques, Laboratoire de Technologie et Biologie Halieutique, 8 rue François Toullec, 56100 Lorient, France
MICHÈLE SALAÜN
Affiliation:
Ifremer, Unité Sciences et Technologies Halieutiques, Laboratoire de Technologie et Biologie Halieutique, 8 rue François Toullec, 56100 Lorient, France
LUCIE SCHUCK
Affiliation:
Ifremer, Unité Sciences et Technologies Halieutiques, Laboratoire de Technologie et Biologie Halieutique, 8 rue François Toullec, 56100 Lorient, France
SANDRINE VAZ
Affiliation:
Ifremer, Laboratoire Halieutique Méditerranée, UMR MARBEC, Avenue Jean Monnet, 34200 Sète, France
DOROTHÉE KOPP
Affiliation:
Ifremer, Unité Sciences et Technologies Halieutiques, Laboratoire de Technologie et Biologie Halieutique, 8 rue François Toullec, 56100 Lorient, France
*
*Correspondence: Laurène Mérillet email: laurene.merillet@gmail.com

Summary

Trawling activities are considered to be one of the main sources of disturbance to the seabed worldwide. We aimed to disentangle the dominance of environmental variations and trawling intensity in order to explain the distribution of diversity patterns over 152 sampling sites in the French trawl fishing-ground, the Grande Vasière. Using a towed underwater video device, we identified 39 taxa to the finest taxonomic level possible, which were clustered according to their vulnerability to trawling disturbance based on functional traits. Using generalized linear models, we investigated whether the density distribution of each vulnerability group was sensitive to trawling intensity and habitat characteristics. Our analyses revealed a structuring effect of depth and substratum on community structure. The distribution of the more vulnerable group was a negative function of trawling intensity, while the distributions of the less vulnerable groups were independent of trawling intensity. Video monitoring coupled with trait-based vulnerability assessment of macro-epibenthic communities might be more relevant than the traditional taxonomic approach to identifying the areas that are most vulnerable to fishing activities in conservation planning.

Type
Non-Thematic Papers
Copyright
Copyright © Foundation for Environmental Conservation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S0376892917000480

References

REFERENCES

Auster, P.J., Gjerde, K., Heupel, E., Watling, L., Grehan, A. & Rogers, A.D. (2011) Definition and detection of vulnerable marine ecosystems on the high seas: Problems with the ‘move-on’ rule. ICES Journal of Marine Science 68: 254264.CrossRefGoogle Scholar
Beauchard, O., Veríssimo, H., Queirós, A. M. & Herman, P.M.J. (2017) The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecological Indicators 76: 8196.CrossRefGoogle Scholar
Blanchard, F., Le Loc'h, F., Hily, C. & Boucher, J. (2004) Fishing effects on diversity, size and community structure of the benthic invertebrate and fish megafauna on the Bay of Biscay coast of France. Marine Ecology Progress Series 280: 249260.CrossRefGoogle Scholar
Bolam, S.G., Coggan, R.C., Eggleton, J., Diesing, M. & Stephens, D. (2014) Sensitivity of macrobenthic secondary production to trawling in the English sector of the Greater North Sea: A biological trait approach. Journal of Sea Research 85: 162177.CrossRefGoogle Scholar
Bouysse, P., Lesueur, P. & Klingebiel, A. (1986) Carte des Sédiments Superficiels du Plateau Continental du Golfe de Gascogne – Partie Septentrionale au 1/500.000. BRGM & IFREMER.Google Scholar
Bremner, J., Rogers, S.I. & Frid, C.L.J. (2006a) Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6: 609622.CrossRefGoogle Scholar
Bremner, J., Rogers, S.I. & Frid, C.L.J. (2006b) Matching biological traits to environmental conditions in marine benthic ecosystems. Journal of Marine Systems 60: 302316.CrossRefGoogle Scholar
Brind'Amour, A., Laffargue, P., Morin, J., Vaz, S., Foveau, A. & Le Bris, H. (2014) Morphospecies and taxonomic sufficiency of benthic megafauna in scientific bottom trawl surveys. Continental Shelf Research 72: 19.CrossRefGoogle Scholar
Campbell, N., Allan, L., Weetman, A. & Dobby, H. (2009) Investigating the link between Nephrops norvegicus burrow density and sediment composition in Scottish waters. ICES Journal of Marine Science 66: 20522059.CrossRefGoogle Scholar
Certain, G., Jørgensen, L.L., Christel, I., Planque, B. & Bretagnolle, V. (2015) Mapping the vulnerability of animal community to pressure in marine systems: Disentangling pressure types and integrating their impact from the individual to the community level. ICES Journal of Marine Science 72: 14701482.CrossRefGoogle Scholar
Clark, M.R., Althaus, F., Schlacher, T.A., Williams, A., Bowden, D.A. & Rowden, A.A. (2016) The impacts of deep-sea fisheries on benthic communities: A review. ICES Journal of Marine Science 73: i52–i69.CrossRefGoogle Scholar
Costello, M.J., Claus, S., Dekeyzer, S. & Tyler-walters, H. (2015) Biological and ecological traits of marine species. PeerJ 3: 129.CrossRefGoogle ScholarPubMed
de Juan, S., Demestre, M. & Thrush, S. (2009) Defining ecological indicators of trawling disturbance when everywhere that can be fished is fished: A Mediterranean case study. Marine Policy 33: 472478.CrossRefGoogle Scholar
de Juan, S. & Demestre, M. (2012) A trawl disturbance indicator to quantify large scale fishing impact on benthic ecosystems. Ecological Indicators 18: 183190.CrossRefGoogle Scholar
Demaneche, S., Begot, E., Gouello, A., Habasque, J., Merrien, C., Leblond, E., Berthou, P., Harscoat, V., Fritsch, M., Leneveu, C. & Laurans, M. (2010). Projet SACROIS “IFREMER/DPMA” – Rapport final – Convention SACROIS 2008–2010 [www document]. URL http://sih.ifremer.fr/Description-des-donnees/Donnees-estimees/SACROISGoogle Scholar
Eigaard, O.R., Bastardie, F., Breen, M., Dinesen, G., Hintzen, N.T., Laffargue, P., Mortensen, L. O., Nielsen, J.R., Nilsson, H.C., O'Neill, F.G., Polet, H., Reid, D.G., Sala, A., Sköld, M., Smith, C., Sorensen, T.K., Tully, O., Zengin, M. & Rijnsdorpa, A.D. (2016) Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES Journal of Marine Science 73: 2743.CrossRefGoogle Scholar
Ellis, N., Pantus, F. & Pitcher, C.R. (2014) Scaling up experimental trawl impact results to fishery management scales – A modelling approach for a ‘hot time’. Canadian Journal of Fisheries and Aquatic Sciences 71: 114.CrossRefGoogle Scholar
Glémarec, M. (1969) Le Plateau Continental Nord-Gascogne et la Grande Vasière Etude Bionomique. Revue des Travaux de l'Institut des Pêches Maritimes 33: 301310.Google Scholar
Gray, J.S., Dayton, P., Thrush, S. & Kaiser, M.J. (2006) On effects of trawling, benthos and sampling design. Marine Pollution Bulletin 52: 840843.CrossRefGoogle ScholarPubMed
Handley, S.J., Willis, T.J., Cole, R.G., Bradley, A., Cairney, D.J., Brown, S.N. & Carter, M.E. (2014) The importance of benchmarking habitat structure and composition for understanding the extent of fishing impacts in soft sediment ecosystems. Journal of Sea Research 86: 5868.CrossRefGoogle Scholar
Hewitt, J., Julian, K. & Bone, E.K. (2011) Chatham – Challenger Ocean Survey 20 / 20 Post-Voyage Analyses: Objective 10 – Biotic Habitats and their Sensitivity to Physical Disturbance. Wellington, New Zealand: NIWA (New Zealand Aquatic Environment and Biodiversity).Google Scholar
Hily, C., Le Loc'h, F., Grall, J. & Glémarec, M. (2008) Soft bottom macrobenthic communities of North Biscay revisited: Long-term evolution under fisheries-climate forcing. Estuarine, Coastal and Shelf Science 78: 413425.CrossRefGoogle Scholar
Hinz, H., Prieto, V. & Kaiser, M.J. (2009) Trawl disturbance on benthic communities: Chronic effects and experimental predictions. Ecological Applications 19: 761773.CrossRefGoogle ScholarPubMed
Howell, K.L., Mowles, S.L. & Foggo, A. (2010) Mounting evidence: Near-slope seamounts are faunally indistinct from an adjacent bank. Marine Ecology 31: 5262.CrossRefGoogle Scholar
ICES (2016a) Report of the Joint ICES/NAFO Working Group on Deep-water Ecology (WGDEC), 15–19 February 2016, Copenhagen, Denmark. ICES CM 2016/ACOM:28. Copenhagen, Denmark: International Council for the Exploitation of the Sea.Google Scholar
ICES (2016b) Report of the Working Group for the Bay of Biscay and the Iberian waters Ecoregion (WGBIE), 13–19 May 2016, ICES HQ, Copenhagen, Denmark. ICES CM/ACOM:12. Copenhagen, Denmark: International Council for the Exploitation of the Sea.Google Scholar
Jørgensen, L.L., Planque, B., Thangstad, T.H. & Certain, G. (2016) Vulnerability of megabenthic species to trawling in the Barents Sea. ICES Journal of Marine Science 73: 8497.CrossRefGoogle Scholar
Kaiser, M.J. & Spencer, B.E. (1996) The effects of beam-trawl disturbance on infaunal communities in different habitats. Journal of Animal Ecology 65: 348358.CrossRefGoogle Scholar
Kaiser, M.J., Clarke, K.R., Hinz, H., Austen, M.C.V, Somerfield, P.J. & Karakassis, I. (2006) Global analysis of response and recovery of benthic biota to fishing. Marine Ecology Progress Series 311: 114.CrossRefGoogle Scholar
Lavorel, S. & Garnier, E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545556.CrossRefGoogle Scholar
Lazure, P., Garnier, V., Dumas, F., Herry, C. & Chifflet, M. (2009) Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology. Continental Shelf Research 29: 985997.CrossRefGoogle Scholar
Lelièvre, S., Vaz, S., Martin, C.S. & Loots, C. (2014) Delineating recurrent fish spawning habitats in the North Sea. Journal of Sea Research 91: 114.CrossRefGoogle Scholar
Lordan, C., Doyle, J., Bunn, R., Fee, D. & Allsop, C. (2011) Aran, Galway Bay and Slyne Head Nephrops Grounds (FU17) 2011 UWTV Survey Report. Galway, Ireland: Marine Institute.Google Scholar
Mallet, D. & Pelletier, D. (2014) Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fisheries Research 154: 4462.CrossRefGoogle Scholar
Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B. & Garlan, T. (2016) Influence of bottom trawling on sediment resuspension in the ‘Grande-Vasière’ area (Bay of Biscay, France). Ocean Dynamics 66: 11811207.CrossRefGoogle Scholar
Palanques, A., Puig, P., Guillén, J. & Martín, J. (2014) Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean). Continental Shelf Research 72: 8398.CrossRefGoogle Scholar
R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [www document]. URL https://www.R-project.org/Google Scholar
Roberts, C. (2010) The Unnatural History of the Sea. Washington, DC, USA: Island Press.Google Scholar
Smith, C.J., Banks, A.C. & Papadopoulou, K.N. (2007) Improving the quantitative estimation of trawling impacts from sidescan-sonar and underwater-video imagery. ICES Journal of Marine Science 64: 16921701.CrossRefGoogle Scholar
Snelgrove P.V.R. (1998) The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation 7: 11231132.CrossRefGoogle Scholar
Taylor, K.E. (2001) Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research 106: 71837192.CrossRefGoogle Scholar
Tillin, H.M., Hiddink, J.G., Jennings, S. & Kaiser, M.J. (2006) Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Marine Ecology Progress Series 318: 3145.CrossRefGoogle Scholar
Thiel, M. & Watling, L. (2015) The natural history of the Crustacea. In: Lifestyles and Feeding Biology, eds. Thiel, M. & Watling, L., pp. 1528. Oxford, UK: Oxford University Press.Google Scholar
Thrush, S.F. & Dayton, P.K. (2010) What can ecology contribute to ecosystem-based management? Annual Review of Marine Science 2: 419441.CrossRefGoogle ScholarPubMed
Tyler-Walters, H., Rogers, S.I., Marshall, C.E. & Hiscock, K. (2009) A method to assess the sensitivity of sedimentary communities to fishing activities. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 303313.CrossRefGoogle Scholar
Vergnon, R. & Blanchard, F. (2006) Evaluation of trawling disturbance on macrobenthic invertebrate communities in the Bay of Biscay, France: Abundance biomass comparison (ABC method). Aquatic Living Resources 19: 219228.CrossRefGoogle Scholar
Watling, L. & Norse, E.A (1998) Disturbance of the seabed by mobile fishing gear: A comparison to forest clearcutting. Conservation Biology 12: 11801197.CrossRefGoogle Scholar
Weiher, E. & Keddy, P. (eds) (2001) Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge, UK: Cambridge University Press.Google Scholar
Supplementary material: File

Mérillet et al supplementary material

Mérillet et al supplementary material 1

Download Mérillet et al supplementary material(File)
File 491.4 KB