Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T13:26:34.607Z Has data issue: false hasContentIssue false

Aminoglycoside resistance patterns of Serratia marcescens strains of clinical origin

Published online by Cambridge University Press:  15 May 2009

R. Coria-Jiménez
Affiliation:
Laboratorio de Bacteriología, Unidad de Investigatión en Salud Infantil, Instituto National de Pediatría, Aυ. IMAN 1 Col. Camisetas, C.P. 14410 Delegación Coyoacan, México,D.F.
C. Ortiz-Torres
Affiliation:
Laboratorio de Bacteriología, Unidad de Investigatión en Salud Infantil, Instituto National de Pediatría, Aυ. IMAN 1 Col. Camisetas, C.P. 14410 Delegación Coyoacan, México,D.F.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aminoglycoside resistance patterns of 147 Serratia marcescens strains of clinical origin were studied. All strains analysed belonged to three different bacterial populations. The periods of study and the institutions the strains were isolated from correlated significantly with the resistance patterns shown by the strains. The most frequent resistance patterns found were the following: ACC (6')-I at the Hospital Infantil de México (Children's Hospital of México), and ANT (2″) +AAC(6′)-I at the Instituto Nacional de Pediatría (INPed or National Institute of Pediatrics) in Mexico City. Furthermore, the isolation frequency of aminoglycoside-sensitive strains decreased remarkably at the INPed over a 12-year period. These results suggest that there has been a selection of Serratia marcescens strains that are very resistant to aminoglycosides.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

REFERENCES

Yu, VL. Serratia marcescens. Historical perspective and clinical review. N Engl J Med 1979; 300: 887–93.CrossRefGoogle ScholarPubMed
Saito, H, Elting, L, Bodey, GP, Berkey, P. Serratia bacteremia: review of 118 cases. Rev Infect Dis 1989; 11: 912–20.CrossRefGoogle ScholarPubMed
Bollman, R, Halle, E, Sokolowska-Kohler, W. et al. , Nosocomial infections due to Serratia marcescens clinical findings, antibiotic susceptibility patterns and fine typing. Infection 1989; 17: 294300.CrossRefGoogle Scholar
Farmer, JJ, Davis, B, Hickman, F. Detection of serratia outbreaks in hospital. Lancet 1976; ii: 455–9.CrossRefGoogle Scholar
Bar-Ness, R, Rosenberg, M. Putative role of a 70 KDa outer surface protein in promoting cell-surface hydrophobicity of Serratia marcescens RZ. J Clin Microbiol 1989; 135: 2277–81.Google ScholarPubMed
Konig, W, Faltin, Y, Scheffee, J, Schoffler, H, Bran, V. Role of cell-bound hemolysin as pathogenicity factor for Serratia infections. Infect Immun 1987; 55: 2554–61.CrossRefGoogle ScholarPubMed
Poole, K, Braun, V. Influence of growth temperature and lipopolysaccharide on hemolytic activity of Serratia marcescens. J Bacteriol 1988; 170: 5146–52.CrossRefGoogle ScholarPubMed
Fujimaki, K, Fujii, T, Aoyama, H. et al. , Quinolone resistance in clinical isolates of Serratia marcescens. Antimicrob Agents Chemother 1989; 33: 785–7.CrossRefGoogle ScholarPubMed
Sanders, S, Watanakunakorn, C. Emergence of resistance to β-lactams. aminoglycosides, and quinolones during combination therapy for infection due to Serratia marcescens. J Infect Dis 1986; 153: 617–9.CrossRefGoogle ScholarPubMed
Hechler, U, Van den Weghe, M, Martin, H, Frere, JM. Overproduced β-lactamase and the outer-membrane barrier as resistance – factors in Serratia marcescens highly resistant to β-lactamase-stable β-lactam antibiotics. J Gen Microbiol 1989; 135: 1275–90.Google ScholarPubMed
Goldstein, FW, Gutmann, L, Williamson, R, Collatz, E, Acar, JF. In vivo and in vitro emergence of simultaneous resistance to both β-lactam and aminoglycoside antibiotics in a strain of Serratia marcescens. Ann Microbiol (Inst Pasteur) 1983; 134: 329–37.Google Scholar
Traub, WH, Bauer, D. Outer membrane protein alterations in Serratia marcescens resistant against aminoglycoside and β-lactam antibiotics. Chemotherapy 1987; 33: 172–6.CrossRefGoogle ScholarPubMed
Shaw, KJ, Rather, PN, Sabatelli, FJ. et al. , Characterization of the chromosomal aac(6′)-Ic gene from Serratia marcescens. Antimicrob Agents Chemother 1992; 36: 1447–55.CrossRefGoogle ScholarPubMed
Dang, P, Gutmann, L, Quentin, C, Williamson, R, Collatz, E. Some properties of Serratia marcescens, Salmonella paratyphi A and Enterobacter cloacae with non-enzyme-dependent multiple resistance to β-lactam antibiotics, aminoglycosides and quinolones. Rev Infect Dis 1988; 10: 899904.CrossRefGoogle ScholarPubMed
Traub, WH, Spohr, M, Bauer, D. Plasmid independent resistance of ‘gray’ colony variants of a strain of Serratia marcescens resistant to amikacin, cefotaxime and moxalactam. Chemotherapy 1983; 29: 265–74.CrossRefGoogle Scholar
Larson, T, Garret, C.Gerding, D. Frequency of aminoglycoside 6′-N-Acetyltransferase among Serratia species during increased use of amikacin in the hospital. Antimicrob Agents Chemother 1986; 30: 176–8.CrossRefGoogle ScholarPubMed
Rubens, CE, McGee, Z, Farrar, W. Loss of an aminoglycoside resistance plasmid by Serratia marcescens during treatment of meningitis with amikacin. J Infect Dis 1980; 141: 346–50.CrossRefGoogle ScholarPubMed
Mendoza, MC, Blanco, MG, Mendez, FJ, Hardisson, C. Evolution de la résistance aux aminosides chez des souches hospitalières de Serratia. Path Biol 1984; 32: 750–4.Google Scholar
Coria-Jiménez, R, Ortiz-Torres, C.Cruz-Camarillo, R. Biotyping of Serratia marcescens strains of clinical origin. Rev Lat amer Microbiol 1992; 34: 253–8.Google ScholarPubMed
Kelly, MT, Brenner, DJ, Farmer, JJ. Enterobacteriaceae. In: Lennette, EH, Balows, A, Hausler, WJ, Shadomy, HJ, eds. Manual of clinical microbiology, 4th ed.Washington: American Society for Microbiology. 1985; 263–77.Google Scholar
Hare, RS, Miller, G, Sabatelli, F, Shaw, K. Aminoglycoside resistance mechanism. Schearing Research New Jersey USA. 1988.Google Scholar
Shimizu, K, Kumada, T, Hsieh, WC. et al. , Comparison of aminoglycoside resistance patterns in Japan. Formosa and Korea, Chile and the United States. Antimicrob Agents Chemother 1985; 28: 282–8.CrossRefGoogle ScholarPubMed
Washington, JA. Susceptibility tests: agar dilution. In: Lennette, EH, Balows, A, Hausler, WJ, Shadomy, HJ, eds. Manual of clinical microbiology, 4th ed.Washington: American Society for Microbiology. 1985: 967–71.Google Scholar
Sanders, WE, Sanders, S. Inducible β-lactamases: clinical and epidemiological implication for use of newer cephalosporins. Rev Infect Dis 1988; 10: 830–8.CrossRefGoogle ScholarPubMed
Shaw, KJ, Hare, RS, Sabatelli, FJ et al. , Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob Agents Chemother 1991; 35: 2253–61.CrossRefGoogle ScholarPubMed
Coria-Jiménez, R, Villa-Tanaka, L, Ortiz-Torres, C. Partial characterization of Serratia marcescens nosocomial strains. Arch Invest Méd (Méx) 1991; 22: 273–8.Google ScholarPubMed
Sifuentes-Osornio, J, Ruiz-Palacios, G, Groschell, DHM. Analysis of epidemiologic markers of nosocomial Serratia marcescens isolates with special reference to the Grimont biotyping system. J Clin Microbiol 1986; 23: 230–4.CrossRefGoogle Scholar