Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T21:51:13.407Z Has data issue: false hasContentIssue false

The bacteriology of dehydrated fish: I. Qualitative and quantitative studies of the drying process

Published online by Cambridge University Press:  15 May 2009

J. M. Shewan
Affiliation:
Torry Research Station, Aberdeen, Department of Scientific and Industrial Research
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In experiments at this Station designed to find the most appropriate methods for the dehydration of fish, it was early recognized that bacteriological control would be necessary in order to ensure the safety of the final product. Many preliminary experiments were performed before a suitable method was found for commercial production. In these experiments data were obtained and are given here to illustrate the general argument, although most of the results are concerned largely with the method finally adopted.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1945

References

REFERENCES

Barber, M. A. (1914). The presence of a white Staphylococcus in the udder of an apparently unhealthy cow. Philipp. J. Sci. 9, B, 515–19.Google Scholar
Baumgartner, J. G. (1943). Canned Food—An Introduction to their Microbiology. London: J. and A. Churchill.Google Scholar
Beatty, S. A. & Gibbons, N. E. (1936). The measurement of spoilage in fish. J. Biol. Bd. Canada, 3, 7791.Google Scholar
Brauer, W. (1937). Untersuchungen über die Zerzet-zungsursache von heissgeraucherten Fischen. Berlin: I.D.Google Scholar
Burova, & Nasledisheva, (1935a). Ann. Metchnikoff Inst. 1, 41 (quoted by Kurochkin & Emelyanshik).Google Scholar
Burova, , Nachaevskaya, Kats & Denisova, (1935b). Ann. Metchnikoff Inst. 2, 349 (quoted by Kurochkin & Emelyanshik).Google Scholar
Cooper, K. E., Davies, J. & Wiseman, J. (1941). An investigation of an outbreak of food poisoning associated with organisms of the Proteus group. J. Path. Bact. 52, 91–8.Google Scholar
Cutting, C. L. & Reay, G. A. (1944). The dehydration of fish. Part I. General. Chem. & Ind. no. 6, pp. 4750.Google Scholar
Dack, G. M. (1943). Food Poisoning. Chicago.Google Scholar
Dack, G. M. & Segalove, M. (1941). Relation of time and temperature to growth and enterotoxin production of Staphylococci. Food Res. 6, 127–33.Google Scholar
Dean, B. (1895). Fishes, Living and Fossil. London: Macmillan and Co.Google Scholar
Dobrowski, G. (1935). The microflora of the sturgeon. Probl. Nutrit. 4, 5664 (in Russian).Google Scholar
Dolman, C. E. (1934). Ingestion of staphylococcal exotoxin by human volunteers with special reference to staphylococcal food poisoning. J. Infect. Dis. 55, 172–83.CrossRefGoogle Scholar
Dolman, C. E. (1943). Bacterial food poisoning. Part II. Canad. Publ. Hlth J. 34, 205–35.Google Scholar
Ermengen, E. van (1897). Über einen neuen anaëroben Bacillus und seine Beziehung zum Botulismus. Z. Hyg. InfektKr. 26, 156.Google Scholar
Ferguson-Wood, E. J. (1940). Studies on the marketing of fresh fish in Australia. Part II. The bacteriology of spoilage in marine fish. Pamphl. Coun. Sci. Industr. Res., Aust., no. 100, Division of Fisheries, Report no. 3.Google Scholar
Fulton, F. (1943). Staphylococcal enterotoxin—with special reference to the kitten test. Brit. J. Exp. Path. 24, 6572.Google Scholar
Geiger, J. C. (1937). Reports of two outbreaks of food poisoning. Publ. Hlth Rep., Wash., 52, 765–72.CrossRefGoogle Scholar
Griffiths, F. P. (1937). A review of the bacteriology of fresh marine fishery products. Food Res. 2, 121–34.Google Scholar
Griffiths, F. P. & Fuller, J. E. (1936). Detection and significance of Escherichia coli in commercial fish and fillets. Amer. J. Publ. Hlth, 26, 259–64.CrossRefGoogle ScholarPubMed
Griffiths, F. P. & Lemon, J. M. (1934). Studies in the smoking of haddock. Invest. Rep. U.S. Bur. Fish. no. 20.Google Scholar
Hazen, E. (1937). A strain of B. botulinus not classified as type A, B or C. J. Infect. Dis. 60, 260–4.Google Scholar
Hazen, E. (1938). Incitants of human botulism. Science, 87, 413–14.Google Scholar
Hess, E. (1929). The bactericidal action of smoke (as used in the smoke curing of fish). Contr. Canad. Biol. Fish. N.S. 4, 2976.Google Scholar
Jensen, L. B. (1941). Control of bacteria in meat products. Proc. Inst. Food Tech. pp. 148–59.Google Scholar
Jensen, L. B. (1943). The bacteriology of ice. Food Res. 8, 265–72.Google Scholar
Jones, A. H. & Lochhead, A. G. (1939). A study of micrococci surviving in frozen-pack vegetables and their enterotoxic properties. Food Res. 4, 203–16.Google Scholar
Jordan, E. O. (1930). The production by Staphylococci of a substance causing food poisoning. J. Amer. Med. Ass. 94, 1648–50.CrossRefGoogle Scholar
Jordan, E. O. & Burrows, W. (1935). The production of enterotoxic substance by bacteria. J. Infect. Dis. 57, 121–8.CrossRefGoogle Scholar
Jordan, E. O., Dack, G. M. & Woolpert, O. (1931). The effect of heat storage and chlorination on the toxicity of Staphylococcus filtrates. J. Prev. Med. 5, 383–6.Google Scholar
Kleeman, I., Frant, S. & Abrahamson, A. E. (1942). Food poisoning outbreaks involving smoked fish—their epidemiology and control. Amer. J. Publ. Hlth, 32, 151–8.CrossRefGoogle ScholarPubMed
Kurochkin, B. I. & Emelyanchik, K. G. (1937). Bacteriological investigation of two cases of fish botulism. Probl. Nutrit. 3, 8995 (in Russian).Google Scholar
Lang, O. W. (1935). Thermal processes for canned marine products. Univ. Calif. Publ. Publ. Hlth, 2, no. 1.Google Scholar
Lang, O. W. & Dean, S. J. (1934). Heat resistance of Cl. botulinum in canned sea food. J. Infect. Dis. 55, 3959.Google Scholar
Lücke, Fr. & Schwartz, W. (1937). Mikrobiologische Untersuchungen an Seefischen. Arch. Mikrobiol. 8, 207–30.CrossRefGoogle Scholar
McCulloch, E. C. (1936). Disinfection and Sterilisation. London.Google Scholar
Macdonald, A. (1942). The biology of the Staphylococci (with an inquiry into the nature of staphylococcal lesions). M.D. Thesis, Aberdeen University.Google Scholar
Madsen, T. (1908). Botulismustoxin. Kraus & Levaditi's Handbuch der Technik und Methodik der Immunitätsforschung, 1, 137–44.Google Scholar
Nelson, F. E. (1942). A study of certain factors which influence the apparent heat resistance of bacteria. J. Bact. 44, 389.Google Scholar
Nelson, F. E. (1943a). Factors which influence the growth of heat treated bacteria. I. A comparison of four agar media. J. Bact. 45, 395403.CrossRefGoogle Scholar
Nelson, F. E. (1943b). Further studies on the effect of the medium on the apparent survival of heat treated bacteria. J. Bact. 46, 486.Google Scholar
Prescott, S. C. & Horwood, M. P. (1935). Sedgwick's Principles of Sanitary Science and Public Health (Chap. II: Ice as a Vehicle of Disease). New York.Google Scholar
Proctor, B. E. & Nickerson, J. T. R. (1935). An investigation of the sterility of fish tissues. J. Bact. 30, 377–82.Google Scholar
Reed, G. B. & Spence, C. M. (1929). The intestinal and slime flora of the haddock—A preliminary report. Contr. Canad. Biol. Fish. N.S. 4, 259–64.Google Scholar
Roberts, J. & Wilson, R. J. (1939). Third outbreak of staphylococcal food poisoning in Hamilton, Ontario. Canad. Publ. Hlth J. 30, 590–8.Google Scholar
Schönberg, F. (1938). Über die wissenschaftlichen Grundlagen zu der Frischerhaltung der Seefische. Vorratspflege und Lebensmittelfors., 1, 133–42.Google Scholar
Shewan, J. M. (1936). Unpublished results.Google Scholar
Shewan, J. M. (1937). The spoilage of haddocks stowed in ice. Rep. Food Invest. Bd, pp. 75–8.Google Scholar
Shewan, J. M. (1938a). The spoilage of fish. Rep. Food Invest. Bd, pp. 7987.Google Scholar
Shewan, J. M. (1938b). Unpublished results.Google Scholar
Shewan, J. M. (1938c). The Strict anaerobes in the slime and intestinal contents of the haddock. J. Bact. 35, 397407.CrossRefGoogle Scholar
Snow, J. E. & Beard, P. J. (1939). Studies on the bacterial flora of North Pacific salmon. Food Res. 4, 563–85.Google Scholar
Stansby, M. E. & Lemon, J. M. (1941). Studies on the handling of fresh mackerel (Scomber scombrus). U.S. Dep. Interior, Fish and Wild Life Service, Research Rep. no. 1.Google Scholar
Stewart, M. M. (1932). The bacterial flora of the slime and intestinal contents of the haddock (Gadus aegle-finus). J. Mar. Biol. Ass. U.K. 18, 3550.Google Scholar
Stewart, M. M. (1934). The bacterial flora of market fish. Rep. Food Invest. Bd, pp. 93–4.Google Scholar
Stewart, M. M. (1935). Unpublished results.Google Scholar
Stritar, J. & Jordan, E. O. (1935). Is a special variety of Staphylococcus concerned in food poisoning? J. Infect. Dis. 56, 17.Google Scholar
Süpfle, K. (1936). Fischkost und Hygiene. Dtsch. Med. Wschr. 62, 847–50.Google Scholar
Thjötta, Th. & Sømme, O. M. (1938). The bacteriological flora of normal fish—A preliminary report. Acta Path. Micr. Scand. Suppl. 37, 514–26.Google Scholar
Waksman, S. A. & Reuszer, H. W. (1932). Bacteria in ocean water and sea bottoms and their role in the cycle of the elements in the sea. J. Bact. 23, 4243 (Abstract).Google Scholar
Waksman, S. A., Reuszer, H. W., Carey, C. L., Hotchkiss, M. & Renn, C. E. (1933). Studies on the biology and chemistry of the Gulf of Maine. III. Bacteriological investigations of the sea water and marine bottoms. Biol. Bull. Woods Hole, 64, 183205.Google Scholar
Woolpert, O. C. & Dack, G. M. (1933). Relation of gastro-intestinal poisons to other toxic substances produced by staphylococci. J. Infect. Dis. 52, 619.CrossRefGoogle Scholar
Wundram, K. D. (1937). Die Fischraucherwaren als Marktware und die für die Überwachung derselben notwendigen Untersuchungen. Hannover: I.D.Google Scholar
Zlatagoroff, S. I. & Soloviev, M. N. (1927). Botulism in the Union of Socialist Soviet Republics. J. Amer. Med. Ass. 88, 2024–5.Google Scholar
Zobell, C. E. (1938). Studies on the bacterial flora of marine bottom sediments. J. Sed. Petrol. 8, 1018.Google Scholar
Zobell, C. E. (1942). Bacteria of the marine world. Sci. Mon. (10), pp. 320–30.Google Scholar
Zobell, C. E. & Conn, J. E. (1940). Studies on the thermal sensitivity of marine bacteria. J. Bact. 40, 223–38.CrossRefGoogle ScholarPubMed