Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T21:11:49.310Z Has data issue: false hasContentIssue false

The classification of coliform bacteria

Published online by Cambridge University Press:  15 May 2009

James F. Malcolm
Affiliation:
From the West of Scotland Agricultural College
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study of the biological characters of 1636 cultures of coliform bacteria, isolated from milk and bovine faeces, shows that the coliform group consists of a large number of different types. These types are so closely interlinked in characters and in relations to environment as to justify their inclusion in one genus. Nevertheless, to facilitate the identification of types, the group may be subdivided into subgroups, the Voges-Proskauer, Koser, inositol and indole reactions being reliable and outstanding criteria for this purpose. These characters show almost perfect correlations with various other characters. Thus Voges-Proskauer-negative types have a low CO2 to H2 ratio and are methyl-red-positive; Voges-Proskauer-positive types have a high CO2 to H2 ratio, are methyl-red-negative and Koser-positive. Koser-negative types are not highly resistant to brilliant green, are non-capsulated, do not form thick mucoid colonies and are Voges-Proskauer-negative, inositol-negative and indole-positive. Koser-positive types are highly resistant to brilliant green, and with the exception of group 2 and certain members of group 3, are frequently encapsulated and form thick, mucoid colonies. Non-inositol-fermenters are as a rule motile and adonitol-negative. Inositol-fermenters are Koser-positive, adonitol-positive, sucrose-positive and raffinose-positive; are frequently encapsulated and form thick, mucoid colonies; and as a rule are non-motile. Indole-negative types are Koser-positive, while indole-positive types are generally Koser-positive or negative according to whether the inositol reactions are positive or negative.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1938

References

REFERENCES

Bardsley, D. A. (1926). J. Hyg., Camb., 25, 11.CrossRefGoogle Scholar
Bardsley, D. A. (1934). J. Hyg., Camb., 34, 38.CrossRefGoogle Scholar
Bergey, D. H. (1923, 1934). Manual of Determinative Bacteriology. London.Google Scholar
Bergey, D. H. & Deehan, S. J. (1908). J. Med. Res. 19, 175.Google Scholar
Burke-Gaffney, H. J. O'D. (1932). J. Hyg., Camb., 32, 85.CrossRefGoogle Scholar
Chen, C. C. & Rettger, L. F. (1920). J. Bact. 5, 253.CrossRefGoogle Scholar
Clark, W. M. & Lubs, H. A. (1915). J. Infect. Dis. 17, 160.CrossRefGoogle Scholar
Clemesha, W. W. (1912). J. Hyg., Camb., 12, 463.Google Scholar
Committee on Bacteriological Technic (1934). Pure Culture Study of Bacteria, 2, leaflet V, 8.Google Scholar
Cruickshank, J. & Cruickshank, R. (1931). A System of Bacteriology. (Medical Research Council), 8, 334. London.Google Scholar
Ford, W. W. (1927). Text-book of Bacteriology. Philadelphia and London.Google Scholar
Georgia, F. R. & Morales, R. (1926). J. Amer. Wat. Wks Ass. 16, 631.Google Scholar
Harden, A. (1901). J. Chem. Soc. 79, 610.CrossRefGoogle Scholar
Harden, A. (1905). J. Hyg., Camb., 5, 488.Google Scholar
Hay, H. L. (1932). J. Hyg., Camb., 32, 240.CrossRefGoogle Scholar
Hicks, E. P. (1927). J. Hyg., Camb., 26, 357.CrossRefGoogle Scholar
Howe, E. C. (1912). Science, N.S. 35, 225.CrossRefGoogle Scholar
Howie, J. W. & Kirkpatrick, J. (1934). J. Path. Bact. 39, 165.CrossRefGoogle Scholar
Hulton, F. (1916). J. Infect. Dis. 19, 606.CrossRefGoogle Scholar
Jackson, D. O. (1911). Amer. J. Pub. Hlth, 1, 930.Google Scholar
Johnson, B. R. (1916). J. Bact. 1, 96Google Scholar
Johnson, B. R. & Levine, M. (1917). J. Bact. 2, 379.CrossRefGoogle Scholar
Jordan, E. O. (1928). General Bacteriology. W. B. Saunders Company.Google Scholar
Kligler, I. J. (1914). J. Infect. Dis. 15, 187.CrossRefGoogle Scholar
Koser, S. A. (1924). J. Bact. 9, 59.CrossRefGoogle Scholar
Koser, S. A. (1926). J. Infect. Dis. 38, 506.CrossRefGoogle Scholar
Kovācs, N. (1928). Z. Immun. Forsch. 55, 311. Chem. Abs. 22, 3425.Google Scholar
Levine, M. (1916 a). J. Bact. 1, 87.Google Scholar
Levine, M. (1916 b). J. Bact. 1, 153.CrossRefGoogle Scholar
Levine, M. (1916 c). J. Infect. Dis. 18, 358.CrossRefGoogle Scholar
Levine, M. (1918). J. Bact. 3, 253.CrossRefGoogle Scholar
Levine, M. (1921). Bull. la, Engng Exp. Sta., No. 62.Google Scholar
Levine, M., Vaughn, R., Epstein, S. S. & Anderson, D. Q. (1932). Proc. Soc. Exp. Biol. 29, 1022.CrossRefGoogle Scholar
Lewis, I. M. & Pittman, E. E. (1928). J. Amer. Wat. Wks Ass. 19, 78.Google Scholar
Linton, C. S. (1924). Abs. Bact. 8, 295.Google Scholar
MacConkey, A. (1905). J. Hyg., Camb., 5, 333.CrossRefGoogle Scholar
MacConkey, A. (1909). J. Hyg., Camb., 9, 86.CrossRefGoogle Scholar
Mackie, T. J. (1921). Trans. Roy. Soc. S. Afr. 9, 315.CrossRefGoogle Scholar
Malcolm, J. F. (1933). J. Dairy Res. 5, 15.CrossRefGoogle Scholar
Malcolm, J. F. (1935). J. Dairy Res. 6, 383.CrossRefGoogle Scholar
Maneval, W. E. (1934). Science, 80, 292.CrossRefGoogle Scholar
Muir, R. & Ritchie, J. (1937). Manual of Bacteriology. Oxford: University Press.Google Scholar
Paine, F. S. (1927). J. Bact. 13, 269.CrossRefGoogle Scholar
Perry, C. A. (1929). Amer. J. Hyg. 10, 580.Google Scholar
Platt, A. E. (1935). J. Hyg., Camb., 35, 437.CrossRefGoogle Scholar
Prescott, S. C. & Winslow, C.-E. A. (1915). Elements of Water Bacteriology. John Wiley and Son.Google Scholar
Raghavachari, T. N. S. (1926). Ind. J. Med. Res. 14, 47.Google Scholar
Rogers, L. A. (1918). J. Bact. 3, 313.CrossRefGoogle Scholar
Rogers, L. A., Clark, W. M. & Davis, B. J. (1914). J. Infect. Dis. 14, 411.CrossRefGoogle Scholar
Rogers, L. A., Clark, W. M. & Evans, A. C. (1914). J. Infect. Dis. 15, 100.CrossRefGoogle Scholar
Rogers, L. A., Clark, W. M. & Evans, A. C. (1915). J. Infect. Dis. 17, 137.CrossRefGoogle Scholar
Rogers, L. A., Clark, W. M. & Evans, A. C. (1916). Amer. J. Pub. Hlth, 6, 374.CrossRefGoogle Scholar
Rogers, L. A., Clark, W. M. & Lubs, H. A. (1918). J. Bact. 3, 231.CrossRefGoogle Scholar
Ruchhoft, C. C., Kallas, J. G., Chinn, Ben & Coulter, E. W. (1931). Part I. J. Bact. 21, 407. Part II. J. Bact. 22, 125.CrossRefGoogle Scholar
Russell, H. L. & Bassett, V. H. (1899). Proc. Amer. Pub. Hlth Ass. 25, 570.Google Scholar
Sherman, J. M. (1935). Fundamentals of Dairy Science, p. 280. New York: Reinhold Publishing Corporation.Google Scholar
Smith, T. (1890). Zbl. Bakt. 7, 502.Google Scholar
Smith, T. (1893). The Wilder Quarter Century Book, p. 187.Google Scholar
Smith, T. (1895). Amer. J. Med. Sci. 110, 283.CrossRefGoogle Scholar
Tittsler, R. P. & Sandholzer, L. A. (1935). J. Bact. 29, 349.CrossRefGoogle Scholar
Werkman, C. H. & Gillen, G. F. (1932). J. Bact. 23, 167.CrossRefGoogle Scholar
Williams, O. B. & Morrow, M. B. (1928). J. Bact. 16, 43.CrossRefGoogle Scholar
Winslow, C.-E. A. & Cohen, B. (1918). J. Infect. Dis. 23, 82.CrossRefGoogle Scholar
Winslow, C.-E. A., Kligler, I. J. & Rothberg, W. (1919). J. Bact. 4, 429.CrossRefGoogle Scholar
Yule, G. U. (1937). An Introduction to the Theory of Statistics. London: C. Griffin and Co., Ltd.Google Scholar