Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T09:18:55.824Z Has data issue: false hasContentIssue false

The effect of the use of different selective media on the ability to recover salmonellae from seagull faeces

Published online by Cambridge University Press:  19 October 2009

C. R. Fricker
Affiliation:
Scottish Salmonella Reference Laboratory, Department of Bacteriology, Stobhill General Hospital, Glasgow G21 3UW
R. W. A. Girdwood
Affiliation:
Scottish Salmonella Reference Laboratory, Department of Bacteriology, Stobhill General Hospital, Glasgow G21 3UW
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solid media were compared for their ability to recover salmonellae from seagull faecal material after pro-enrichment in buffered peptone water and enrichment in Rappaport's broth. Of the 847 specimens examined 96 were found to be positive for salmonellae. Use of Brilliant Green agar containing sulphamandelate supplement resulted in the detection of salmonellae from each of the 96 samples found to be positive and was the most efficient medium tested. Brilliant Green agar lacking the supplement was the least effective medium, salmonellae being isolated from only 80 samples using this medium.

All of the media tested were shown to support the growth of a wide range of salmonella serotypes, although Salmonella typhi and S. dublin did not form colonies on those media which contained Brilliant Green. Hynes' modification of deoxycholate citrate agar was shown to be considerably less inhibitory to salmonellae after ageing for four days. Ageing of other media had no significant affect on their ability to support the growth of salmonellae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Chau, P. Y. & Leung, Y. K. (1978). Inhibitory action of various plating media on the growth of certain Salmonella serotypes. Journal of Applied Bacteriology 45, 341.Google Scholar
Cook, G. T. (1952). Comparison of two modifications of bismuth sulphite agar for the isolation and growth of Salmonella typhi and Salmonella typhimurium. Journal of Pathology and Bacteriology 64, 559.Google Scholar
Dixon, J. M. S. (1961). Rapid isolation of salmonellae from faeces. Journal of Clinical Pathology 14, 397.CrossRefGoogle ScholarPubMed
Edgar, D. & Soar, M. S. (1979). Evaluation of culture media for the isolation of salmonellas from sewage sludge. Journal of Applied Bacteriology 47, 237.CrossRefGoogle ScholarPubMed
Fricker, C. R. (1983). A novel procedure for the isolation of enteric pathogens from wild birds. Journal of Applied Bacteriology 55, viii.Google Scholar
Fricker, C. R. (1984). A comparison of methods for the isolation of salmonellae from sewage sludge. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene, I. Abt. Orig. B (In the Press).Google Scholar
Fricker, C. R., Girdwood, R. W. A. & Munro, D. (1983). A comparison of enrichment media for the isolation of salmonellae from seagull cloacal swabs. Journal of Hygiene 91, 53.Google Scholar
Harvey, R. W. S. (1956). Choice of a selective medium for the routine isolation of the salmonella group. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service 15, 118.Google ScholarPubMed
Harvey, R. W. S. & Price, T. H. (1968). Elevated temperature incubation of enrichment media for the isolation of salmonellas from heavily contaminated materials. Journal of Hygiene 66, 377.CrossRefGoogle ScholarPubMed
Harvey, R. W. S. & Price, T. H. (1974). Isolation of Salmonellas. Public Health Laboratory Service Monograph Series 8, London: HMSO.Google Scholar
Harvey, R. W. S. & Price, Y. H. (1975). Studies on the isolation of Salmonella dublin. Journal of Hygiene 74, 369.CrossRefGoogle ScholarPubMed
Harvey, R. W. S. & Price, T. H. (1981). Comparison of selenite F, Muller–Kauffmann tetrathionate and Rappaport's medium for salmonella isolation from chicken giblets after pre-enrichment in buffered peptone water. Journal of Hygiene 87, 219.CrossRefGoogle ScholarPubMed
Harvey, R. W. S., Price, T. H. & Xirouchaki, E. (1979). Comparison of selenite F, Muller–Kauffmann tetrathionate and Rappaport's medium for the isolation of salmonellas from sewage-polluted natural water using a pre-enrichment technique. Journal of Hygiene 83, 451.Google Scholar
Magee, M. F. & Hinton, M. (1974). The growth of Salmonella dublin and Salmonella typhimurium on MacConkey media containing brilliant green. Medical Laboratory Sciences 31, 175.Google Scholar
Miles, A. A. & Misra, S. S. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene, 38, 732.Google Scholar
Rappaport, F., Konforti, N. & Navon, B. (1956). A new enrichment medium for certain salmonellae. Journal of Clinical Pathology 9, 261.CrossRefGoogle Scholar
Restaino, L., Grauman, G. S., McCall, W. A. & Hill, W. M. (1977). Effects of varying concentrations of novobiocin incorporated into two Salmonella plating media on the recovery of four Enterobacteriaceae. Applied and Environmental Microbiology 33, 585.CrossRefGoogle ScholarPubMed
Shanson, D. C. (1975). A new selective medium for the isolation of salmonellae other than Salmonella typhi. Journal of Medical Microbiology 8, 357.CrossRefGoogle ScholarPubMed
Vassiliadis, P., Pateraki, E., Papaiconomou, N., Papadakis, J. A. & Trichopoulos, D. (1976 a). Nouveau procédé d'enrichissement de Salmonella. Annales de Microbiologie (Institut Pasteur) 127B, 195.Google Scholar
Vassiliadis, P., Papadakis, J., Pateraki, E., Trichopoulos, D. & Avramidis, D. (1976 b). Inhibition de certaines souches de Salmonella par la sulfadiazine additionnelle dans la gelose au vert brillant. Archives de l'Institut Pasteur Hellénique 22, 29.Google Scholar
Vassiliadis, P., Kalandidi, A., Xirouchaki, E., Papadakis, J. & Trichopoulos, D. (1977). Isolement de salmonelles à partir de saucisses de pore en utilisant un nouveau procédé d'enrichissement (R10/43°). Recueil de médecine vétérinaire de l'Ecole d'Alfort 153, 489.Google Scholar
Vassiliadis, P., Trichopoulos, D., Kalandidi, A. & Xirouchaki, E. (1978). Isolation of salmonellae from sewage with a new procedure of enrichment. Journal of Applied Bacteriology 44, 233.CrossRefGoogle ScholarPubMed
Vassiliadis, P., Trichopoulos, D., Kalapothaki, V., Papadakis, J. & Série, P. (1979 a). Isolement de salmonelles à partir de matières fécales de pores apparemment sains, avee le nouveau procédé d'enrichissement R10/43°. Iiecueil de médecine vétérinaire de l'Ecole Alfort 115, 559.Google Scholar
Vassiliadis, P., Trichopoulos, D., Papadakis, J., Kalapothaki, V. & Série, Ch. (1979 b). Brilliant green deoxycholate agar as an improved selective medium for the isolation of Salmonella. Annales de la Société Belge de Médecine Tropicale 59, 117.Google Scholar
Vassiliadis, P., Trichopoulos, D.Kalapothaki, V. & Série, Ch. (1981). Isolation of salmonellas with the use of 100 ml of the R10 modification of Rappaport's enrichment medium. Journal of Hygiene 87, 35.Google Scholar
Watson, D. C. &; Walker, A. P. (1978). A modification of brilliant green agar for improved isolation of Salmonella. Journal of Applied Bacteriology 45, 195.CrossRefGoogle ScholarPubMed
Wren, M. W. D. (1975). Xylose lysine deoxycholate agar: a useful enrichment medium for Salmonellae. Medical Laboratory Technology 32, 225.Google Scholar