Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T13:05:08.747Z Has data issue: false hasContentIssue false

Laboratory diagnosis of rubella: past, present and future

Published online by Cambridge University Press:  15 May 2009

J. E. Cradock-Watson
Affiliation:
Public Health Laboratory, Withington Hospital, Manchester M20 8LR
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fifty years ago in New South Wales the late Sir Norman Gregg [1] described congenital cataracts in 78 babies, 67 of whose mothers had had clinical rubella in early pregnancy; he concluded that the disease in the mother caused the abnormality in the baby. Gregg [1–3] and Swan [4, 5] and their colleagues reported that deafness, heart disease and microcephaly were also major components of the congenital rubella syndrome. The need to prevent this tragic outcome stimulated intensive work on laboratory diagnosis and vaccine development, leading to the isolation of rubella virus in 1962 and then to methods for antibody detection. These complementary advances established the two traditional pillars of virological diagnosis and opened the way to immunization, with the result that some countries are now on the verge of eliminating a disease which for over 100 years was regarded as no more than a mild and harmless exanthem of childhood.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

REFERENCES

1.Gregg, NM. Congenital cataract following German measles in the mother. Trans Ophthalmol Soc Aust 1941; 3: 3445.Google Scholar
2.Gregg, NM. Further observations on congenital defects in infants following maternal rubella. Trans Ophthalmol Soc Aust 1944; 4: 119–31.Google Scholar
3.Gregg, NM, Beavis, WR, Heseltine, M, Macklin, AE, Vickery, D. Occurrence of congenital defects in children following maternal rubella during pregnancy. Med J Aust 1945; 2: 122–6.CrossRefGoogle Scholar
4.Swan, C, Tostevin, AL, Moore, B, Mayo, H, Black, GHB. Congenital defects in infants following infectious diseases during pregnancy. Med J Aust 1943; 2: 201–10.CrossRefGoogle Scholar
5.Swan, C, Tostevin, AL, Black, GHB. Final observations on congenital defects in infants following infectious disease during pregnancy with special reference to rubella. Med J Aust 1946; 2: 889.CrossRefGoogle ScholarPubMed
6.Weller, TH, Neva, FA. Propagation in tissue culture of cytopathic agents from patients with rubella-like illness. Proc Soc Exp Biol Med 1962; 111: 215–25.CrossRefGoogle Scholar
7.Parkman, PD, Buescher, EL, Artenstein, MS. Recovery of rubella virus from army recruits. Proc Soc Exp Biol Med 1962; 111: 225–30.CrossRefGoogle ScholarPubMed
8.Neva, FA, Weller, TH. Enhanced cytopathic effect of rubella agents in amnion cells and propagation in beef embryo tissues. Fed Proc 1963; 22: 208.Google Scholar
9.Parkman, PD, Mundon, FK, McCown, JM, Buescher, EL. Studies of rubella. II. Neutralization of the virus. J Immunol 1964; 93: 608–17.CrossRefGoogle ScholarPubMed
10.Parkman, PD, Phillips, PE, Kirschstein, RL, Meyer, JM. Experimental rubella virus infection in the rhesus monkey. J Immunol 1965; 95: 743–52.CrossRefGoogle ScholarPubMed
11.Alford, CA Jr, Kanich, LS. Congenital rubella: a review of the virologic and serologic phenomena occurring after maternal rubella in the first trimester. Southern Med J 1966; 59: 745–8.CrossRefGoogle ScholarPubMed
12.Singer, DB, Rudolph, AJ, Rosenberg, HS, Rawls, WE, Boniuk, M. Pathology of the congenital rubella syndrome. J Pediatr 1967; 71: 665–75.CrossRefGoogle ScholarPubMed
13.McCarthy, K, Taylor-Robinson, CH, Pillinger, SE. Isolation of rubella virus from cases in Britain. Lancet 1963; ii: 593–8.CrossRefGoogle Scholar
14.Taylor-Robinson, CH, McCarthy, K, Grylls, SG, O'ryan, EM. Plaque formation by rubella virus. Lancet 1964; i: 1364–5.CrossRefGoogle Scholar
15.McCarthy, K. Cell cultures useful for the study of rubella. Am J Dis Child 1969; 118: 7882.Google Scholar
16.Hutchinson, DN, Thompson, KM. Continuous rabbit kidney cell cultures in the diagnosis of rubella infections. Mon Bull Min Hlth Pub Hlth Lab Serv 1965; 24: 385–91.Google Scholar
17.Kay, HEM, Peppercorn, ME, Porterfield, JS, McCarthy, K, Taylor-Robinson, CH. Congenital rubella infection of a human embryo. Br Med J 1964; 2: 166–7.CrossRefGoogle ScholarPubMed
18.Thompson, KM, Tobin, Jo'h. Isolation of rubella virus from abortion material. Br Med J 1970; 1: 264–6.CrossRefGoogle Scholar
19.Schmidt, NJ, Lennette, EH, Woodie, JD, Ho, HH. Identification of rubella virus isolates by immunofluorescent staining, and a comparison of the sensitivity of three cell culture systems for recovery of virus. J Lab Clin Med 1966; 68: 502–9.Google Scholar
20.Woods, WA, Johnson, RT, Hostetler, DD, Lepow, ML, Robbins, FC. Immunofluorescent studies on rubella-infected tissue cultures and human tissues. J Immunol 1966; 96: 253–60.CrossRefGoogle ScholarPubMed
21.Cradock-Watson, JE, Miller, E, Ridehalgh, MKS, Terry, G, Ho-Terry, L. Detection of rubella virus in fetal and placental tissues and in the throats of neonates after serologically confirmed rubella in pregnancy. Prenatal Diagnosis 1989; 9: 91–6.CrossRefGoogle ScholarPubMed
22.Sever, JL, Huebner, RJ, Castellano, GA, Sarna, BS, Fabiyi, A, Schiff, GM, Cusumano, CL. Rubella complement fixation test. Science 1965; 148: 385–7.CrossRefGoogle ScholarPubMed
23.Stewart, GL, Parkman, PD, Hopps, HE, Douglas, RD, Hamilton, JP, Meyer, HM Jr. Rubella-virus haemagglutination-inhibition test. New Engl J Med 1967; 276: 554–7.CrossRefGoogle Scholar
24.Public Health Laboratory Service Standing Advisory Committee on Viral Reagents. Haemagglutination-inhibition test for the detection of rubella antibody. J Hyg 1978; 81: 383–8.Google Scholar
25.Murray, HGS, Stanton, J, Gardner, PS. Study of discrepancies in rubella haemagglutinin titrations and a reappraisal of diluents used in the rubella haemagglutination inhibition technique. J Clin Pathol 1985; 38: 198202.CrossRefGoogle Scholar
26.Brown, GC, Maassab, HF, Veronelli, JA, Francis, T Jr. Detection of rubella antibodies in human serum by the indirect fluorescent antibody technique. Arch Ges Virus Forsch 1965; 16: 459–63.CrossRefGoogle ScholarPubMed
27.Cradock-Watson, JE, Bourne, MS, Vandervelde, EM. IgG, IgA and IgM responses in acute rubella determined by the immunofluorescent technique. J Hyg 1972; 70: 473–85.CrossRefGoogle ScholarPubMed
28.Cradock-Watson, JE, Ridehalgh, MKS, Chantler, S. Specific immunoglobulins in infants with the congenital rubella syndrome. J Hyg 1976; 76: 109–23.CrossRefGoogle ScholarPubMed
29.Voller, A, Bidwell, DE. A simple method for detecting antibodies to rubella. Br J Exp Path 1975; 56: 338–9.Google ScholarPubMed
30.Morgan-Capner, P, Hudson, P, Wright, J, Thomas, HIJ, Rubella. In: Wreghitt, TG, Morgan-Capner, P, eds. ELISA in the clinical microbiology laboratory. London: Public Health Laboratory Service, 1990: 4960.Google Scholar
31.Vesikari, T, Vaheri, A, Rubella: a method for rapid diagnosis of a recent infection by demonstration of the IgM antibodies. Br Med J 1968; 1: 221–3.CrossRefGoogle ScholarPubMed
32.Gupta, JD, Peterson, V, Stout, M, Murphy, AM. Single-sample diagnosis of recent rubella by fractionation of antibody on Sephadex G-200 column. J Clin Pathol 1971; 24: 547–50.CrossRefGoogle ScholarPubMed
33.Baublis, JV, Brown, GC. Specific response of the immunoglobulins to rubella infection. Proc Soc Exp Biol Med 1968; 128: 206–10.CrossRefGoogle ScholarPubMed
34.Vejtorp, M, Fanoe, E, Leerhoy, J. Diagnosis of postnatal rubella by the enzyme-linked immunosorbent assay for IgM and IgG antibodies. Acta Path Microbiol Scand, Sect B 1979; 87: 155–60.Google Scholar
35.Meurman, OH, Viljanen, MK, Granfors, K. Solid-phase radioimmunoassay of rubella virus immunoglobulin M antibodies: comparison with sucrose density gradient centrifugation test. J Clin Microbiol 1977; 5: 257–62.CrossRefGoogle ScholarPubMed
36.Diment, JA, Pepys, J. Immunosorbent separation of IgG and IgM for the radioimmunoassay of specific antibodies. In: Hoffmann-Ostenhof, O. et al. , eds. Affinity chromatography. Oxford: Pergamon Press. 1978: 229–31.CrossRefGoogle Scholar
37.Brown, DWG. Viral diagnosis by antibody capture assay. In: Mortimer, PP. ed. Public health virology, 12 reports. London: Public Health Laboratory Service. 1986: 92108.Google Scholar
38.Diment, JA, Chantler, SM. Enzyme immunoassay for detection of rubella specific IgM antibody. Lancet 1981; i: 394–5.CrossRefGoogle Scholar
39.Vejtorp, M. Solid phase anti-IgM ELISA for detection of rubella specific IgM antibodies. Acta Path Microbiol Scand, Sect B 1981; 89: 123–8.Google ScholarPubMed
40.Mortimer, PP, Tedder, RS, Hambling, MH, Shafi, MS, Burkhardt, F, Schilt, U. Antibody capture radioimmunoassay for anti-rubella IgM. J Hyg 1981; 86: 139–53.CrossRefGoogle ScholarPubMed
41.Tedder, RS, Yao, JL, Anderson, MJ. The production of monoclonal antibodies to rubella haemagglutinin and their use in antibody-capture assays for rubella-specific IgM. J Hyg 1982; 88: 335–50.CrossRefGoogle ScholarPubMed
42.Morgan-Capner, P, Hodgson, J, Hambling, MH. et al. Detection of rubella-specific IgM in subclinical rubella reinfection in pregnancy. Lancet 1985; i: 244–6.CrossRefGoogle Scholar
43.Kurtz, JB, Anderson, MJ. Cross-reactions in rubella and parvovirus specific IgM tests. Lancet 1985; ii: 1356.CrossRefGoogle Scholar
44.Haukenes, G, Blom, H. False positive rubella virus haemagglutination inhibition reactions: occurrence and disclosure. Med Microbiol Immunol 1975; 161: 99106.CrossRefGoogle ScholarPubMed
45.Bradstreet, CMP, Kirkwood, B, Pattison, JR, Tobin, Jo'h. The derivation of a minimum immune titre of rubella haemagglutination-inhibition (HI) antibody. A Public Health Laboratory Service collaborative survey. J Hyg 1978; 81: 383–8.CrossRefGoogle ScholarPubMed
46.Skaug, K, Orstavik, I, Ulstrup, JC. Application of the passive haemolysis test for the determination of rubella virus antibodies. Acta Path Microbiol Scand, Sect B 1975; 83: 367–72.Google ScholarPubMed
47.Strannegard, O, Grillner, L, Lindberg, IM. Hemolysis-in-gel test for the demonstration of antibodies to rubella virus. J Clin Microbiol 1975; 1: 491–4.CrossRefGoogle ScholarPubMed
48.Kurtz, JB, Mortimer, PP, Mortimer, PR, Morgan-Capner, P, Shafi, MS, White, GBB. Rubella antibody measured by radial haemolysis. Characteristics and performance of a simple screening method for use in diagnostic laboratories. J Hyg 1980; 84: 213–22.CrossRefGoogle ScholarPubMed
49.Alford, CA Jr. Studies on antibody in congenital rubella infections. Am J Dis Child 1965; 110: 455–63.CrossRefGoogle ScholarPubMed
50.Bellanti, JA, Artenstein, MS, Olson, LC, Buescher, EL, Luhrs, CE, Milstead, KL. Congenital rubella. Clinicopathologie, virologic and immunologic studies. Am J Dis Child 1965; 110: 464–72.CrossRefGoogle Scholar
51.Vesikari, T, Vaheri, A, Pettay, O, Kunnas, M. Congenital rubella: immune response of the neonate and diagnosis by demonstration of specific IgM antibodies. J Pediatr 1969; 75: 658–64.CrossRefGoogle ScholarPubMed
52.Pattison, JR, Jackson, CM, Hiscock, JA, Cradock-Watson, JE, Ridehalgh, MKS. Comparison of methods for detecting specific IgM antibody in infants with congenital rubella. J Med Microbiol 1978; 11: 411–8.CrossRefGoogle ScholarPubMed
53.Chantler, S, Evans, CJ, Mortimer, PP, Cradock-Watson, JE, Ridehalgh, MKS. A comparison of antibody capture radio- and enzyme immunoassays with immunofluorescence for detecting IgM antibody in infants with congenital rubella. J Virol Meth 1982; 4: 305–13.CrossRefGoogle ScholarPubMed
54.Dudgeon, JA, Marshall, , Peckham, CS. Humoral immune response in congenital rubella. Lancet 1972; ii: 480–1.CrossRefGoogle Scholar
55.Hancock, EJ, Pot, K, Puterman, ML, Tingle, AJ. Lack of association between litres of HAI antibody and whole-virus ELISA values for patients with congenital rubella syndrome. J Infect Dis 1986; 154: 1031–3.CrossRefGoogle Scholar
56.Miller, E, Cradock-Watson, JE, Pollock, TM. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 1982; ii: 781–4.CrossRefGoogle Scholar
57.Miller, E. Rubella in the United Kingdom. Epidemiol Infect 1991; 107: 3344.CrossRefGoogle ScholarPubMed
58.Mortimer, PP, Edwards, JMB, Porter, AD, Tedder, RS, Mace, JE, Hutchinson, A. Are many women immunized against rubella unnecessarily? J Hyg 1981; 87: 131–8.CrossRefGoogle ScholarPubMed
59.Public Health Laboratory Service. Laboratory diagnosis of rubella. Summary of recommendations of the PHLS Working Party. PHLS Microbiology Digest 1988; 5: 4952.Google Scholar
60.Best, JM, Banatvala, JE, Morgan-Capner, P, Miller, E. Fetal infection after maternal reinfection with rubella: criteria for defining reinfection. Br Med J 1989; 299: 773–5.CrossRefGoogle ScholarPubMed
61.O'Shea, S, Best, JM, Banatvala, JE, Marshall, WC, Dudgeon, JA. Rubella vaccination: persistence of antibodies for up to 16 years. Br Med J 1982; 285: 253–5.CrossRefGoogle ScholarPubMed
62.Morgan-Capner, P. Does rubella reinfection matter? In: Mortimer, PP. ed. Public health virology, 12 reports. London: Public Health Laboratory Service. 1986: 5062.Google Scholar
63.Hornstein, L, Levy, U, Fogel, A. Clinical rubella with virus transmission to the fetus in a pregnant woman considered to be immune. New Engl J Med 1988; 319: 1415–6.Google Scholar
64.Saule, H, Enders, G, Zeller, J, Bernsau, U. Congenital rubella infection after previous immunity of the mother. Eur J Pediatr 1988; 147: 195–6.CrossRefGoogle ScholarPubMed
65.Enders, G, Knotek, F. Rubella IgG total antibody avidity and IgG subclass-specific antibody avidity assay and their role in the differentiation between primary rubella and rubella reinfection. Infection 1989; 17: 218–26.CrossRefGoogle ScholarPubMed
66.Gilbert, J, Kudesia, G. Fetal infection after maternal reinfection with rubella. Br Med J 1989; 299: 1217.CrossRefGoogle ScholarPubMed
67.Das, BD, Lakhani, P, Kurtz, JB, Hunter, N, Watson, BE, Cartwright, KAV, Caul, EO, Roome, APCH. Congenital rubella after previous maternal immunity. Arch Dis Child 1990; 65: 545–6.CrossRefGoogle ScholarPubMed
68.Cradock-Watson, JE, Ridehalgh, MKS, Anderson, MJ, Pattison, JR. Outcome of asymptomatic infection with rubella virus during pregnancy. J Hyg 1981; 87: 147–54.CrossRefGoogle ScholarPubMed
69.Thomas, HIJ, Morgan-Capner, P. Specific IgG subclass antibody in rubella virus infections. Epidemiol Infect 1988; 100: 443–53.CrossRefGoogle ScholarPubMed
70.Thomas, HIJ, Morgan-Capner, P. Rubella-specific IgG subclass avidity ELISA and its role in the differentiation between primary rubella and rubella reinfection. Epidemiol Infect 1988; 101: 591–8.CrossRefGoogle ScholarPubMed
71.Hedman, K, Seppala, I. Recent rubella virus infection indicated by a low avidity of specific IgG. J Clin Immunol 1988; 8: 214–21.CrossRefGoogle ScholarPubMed
72.Hedman, K, Rousseau, SA. Measurement of avidity of specific IgG for verification of recent primary rubella. J Med Virol 1989; 27: 288–92.CrossRefGoogle ScholarPubMed
73.Daffos, F, Forestier, F, Grangeot-Keros, L, Pavlovsky, MC, Lebon, P, Chartier, M, Pillot, J. Prenatal diagnosis of congenital rubella. Lancet 1984; ii: 13.CrossRefGoogle Scholar
74.Enders, G, Jonatha, W. Prenatal diagnosis of intrauterine rubella. Infection 1987; 15: 162–4.CrossRefGoogle ScholarPubMed
75.Morgan-Capner, P, Rodeck, CH, Nicolaides, KH, Cradock-Watson, JE. Prenatal detection of rubella-specific IgM in fetal sera. Prenatal Diagnosis 1985; 5: 21–6.CrossRefGoogle ScholarPubMed
76.Ho-Terry, L, Terry, G, Londesborough, P. Diagnosis of foetal rubella virus infection by polymerase chain reaction. J. Gen Virol 1990; 71: 1607–11.CrossRefGoogle ScholarPubMed
77.Terry, GM, Ho-Terry, L, Warren, RC, Rodeck, CH, Cohen, A, Rees, KR. First trimester prenatal diagnosis of congenital rubella: a laboratory investigation. Br Med J 1986; 292: 930–3.CrossRefGoogle ScholarPubMed
78.Scalia, G, Gerna, G, Halonen, PE. Detection of rubella virus antigen by time-resolved fluoroimmunoassay and by enzyme immunoassay. J Med Virol 1989; 29: 164–9.CrossRefGoogle ScholarPubMed
79.Terry, GM, Ho-Terry, L, Londesborough, P, Rees, KR. Localization of the rubella E1 epitopes. Arch Virol 1988; 98: 189–97.CrossRefGoogle ScholarPubMed
80.Terry, GM, Ho-Terry, L, Londesborough, P, Rees, KR. A bio-engineered rubella E1 antigen. Arch Virol 1989; 104: 6375.CrossRefGoogle ScholarPubMed
81.Oker-Blom, C, Pettersson, RE, Summers, MD. Baculovirus polyhedrin promoter-directed expression of rubella virus envelope glycoproteins, E1 and E2, in Spodoptera frugiperda cells. Virology 1989; 172: 8291.CrossRefGoogle ScholarPubMed
82.Mortimer, PP, Parry, JV. The use of saliva for viral diagnosis and screening. Epidemiol Infect 1988; 101: 197201.CrossRefGoogle ScholarPubMed