Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T01:24:09.530Z Has data issue: false hasContentIssue false

The nuclear cycle in bacteria

Published online by Cambridge University Press:  15 May 2009

K. A. Bisset
Affiliation:
Department of Bacteriology, University of Birmingham
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Strains of Bact. coli and related bacteria possess a life cycle resembling that of Myxobacteria. The vesicular, resting nucleus is contained in a microcyst, which is formed by a process suggestive of sexual conjugation.

2. The microcyst germinates by the transformation of the resting nucleus into the chromosome-like bodies typical of active, vegetative cultures. These may be analogous to the chromosome complexes of yeasts. The period of germination of microcysts corresponds to the lag phase of cultures.

3. The nucleus remains permanently in the mitotic condition during the active, vegetative phase of growth, and reproduces by an asexual and a sexual method.

4. Older cultures may be transformed directly into microcysts or may first adopt a secondary, vegetative phase, in which the nucleus is in the form of a single, central body.

5. Microcyst formation differs from spore formation in that it lacks the obvious reduction processes associated with spore formation, upon which a few original observations are included.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1949

References

REFERENCES

Allen, L. A., Appleby, J. C., & Wolf, J., (1939). Zbl. Bakt. (2. Abt. Orig.), 100, 3.Google Scholar
Badian, J., (1930). Acta Soc. Bot. Polon. 7, 55.Google Scholar
Badian, J., (1933a). Acta Soc. Bot. Polon. 10, 361.Google Scholar
Badian, J., (1933b). Arch. Mikrobiol. 4, 409.Google Scholar
Bebbe, J. M., (1941). J. Bact. 42, 193.CrossRefGoogle Scholar
Bisset, K. A., (1947). J. Gen. Microbiol. 2, 83.Google Scholar
Bisset, K. A., (1948a). J. Hyg., Camb., 46, 173.Google Scholar
Bisset, K. A., (1948b). J. Gen. Microbiol. 2, 248.CrossRefGoogle Scholar
Bisset, K. A., (1948c). J. Hyg., Camb., 46, 264.Google Scholar
Demerec, M., & Latarjet, R., (1946). Cold Spr. Harb. Sym. Quant. Biol. 11, 38.Google Scholar
Dubos, R. J., (1946). The Bacterial Cell. Harvard Press.Google Scholar
Flewett, T. H., (1948). J. Gen. Microbiol. 2, 325.CrossRefGoogle Scholar
Klieneberger-Nobel, E., (1945). J. Hyg., Camb., 44, 99.CrossRefGoogle Scholar
Klieneberger-Nobel, E., (1947). J. Gen. Microbiol. 1, 33.CrossRefGoogle Scholar
Krzemieniewski, H., & Krzemieniewski, S., (1928). Acta Soc. Bot. Polon. 5, 46.CrossRefGoogle Scholar
Krzemieniewski, H., (1930). Acta Soc. Bot. Polon. 7, 507.Google Scholar
Lewis, I. M., (1941). Bact. Rev. 5, 181.Google Scholar
Lindegren, C. C., & Lindegren, G., (1946). Cold Spr. Harb. Sym. Quant. Biol. 11, 115.Google Scholar
Peshkoff, M. A., (1940). J. Gen. Biol. (Russian), 1, 613.Google Scholar
Piekarski, G., (1937). Arch. Mikrobiol. 8, 428.Google Scholar
Robinow, C. F., (1946). Addendum to: The Bacterial Cell, Dubos.Google Scholar
Schaudinn, F., (1902). Arch. Protistenk. 1, 306.Google Scholar
Schaudinn, F., (1903). Arch. Protistenk. 2, 421.Google Scholar
Stoughton, R. H., (1929). Proc. Roy. Soc. B, 105, 469.Google Scholar
Stoughton, R. H., (1932). Proc. Roy. Soc. B, 111, 46.Google Scholar