Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T08:48:38.817Z Has data issue: false hasContentIssue false

Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe

Published online by Cambridge University Press:  15 May 2009

Christiane Wolz
Affiliation:
Hygiene Institute, University of Tübingen, Tübingen, Federal Republic of Germany, Inselhospital, BernSwitzerland
Gerd Kiosz
Affiliation:
Kurklinik Satteldüne, Amrum, FRG, University of Colorado, Inselhospital, BernSwitzerland
John W. Ogle
Affiliation:
Pediatrics, Inselhospital, BernSwitzerland
Michael L. Vasil
Affiliation:
Departments of Microbiology and Immunology and Pediatrics, Inselhospital, BernSwitzerland
Urs Schaad
Affiliation:
University of Colorado, Denver, USA
Konrad Botzenhart
Affiliation:
Hygiene Institute, University of Tübingen, Tübingen, Federal Republic of Germany, Inselhospital, BernSwitzerland
Gerd Döring*
Affiliation:
Hygiene Institute, University of Tübingen, Tübingen, Federal Republic of Germany, Inselhospital, BernSwitzerland
*
1Professor Gerd Döring, Abt, Allgemeine Hygiene und Umwelthygiene, Hygiene-Institut. Universität Tübingen, Silcherstrasse 7, D-7400 Tübingen, FRG.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To investigate cross-colonization with and persistence of Pseudomonas aeruginosa in cystic fibrosis (CF). 181 isolates from 76 CF patients were typed using a P. aeruginosa -specific DNA probe. Whereas sibling pairs predominantly harboured genotypically identical P. aeruginosa strains, all of the other patients harboured different strains. Seventy-nine per cent (22/31) of the infected CF patients harboured the same strains at the beginning and the end of a summer camp. A change of strains was seen in 10% (3/31) of the patients at the end of the camp. Forty-six per cent (6/13) of the patients who were apparently initially uninfected, acquired P. aeruginosa by the end of the period. Genotyping proved that strain change or acquisition was due to cross-colonization in four of nine cases. Very little P. aeruginosa was isolated from the inanimate environment. Persistence of P. aeruginosa after a temporary loss due to antibiotic therapy was seen in 12/16 paired patient strains before and after antibiotic therapy. Thus, suppression followed a flare-up seemed to occur in these patients rather than eradication and a new infection. When 35 patients were followed over a period of 6 months, 7 (20%) changed the strain in their sputum. Only one of 43 patients harboured two different P. aeruginosa strains simultaneously over a long period.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

REFERENCES

Bergan, T. & Hoiby, N. (1975). Epidemiological markers for Pseudomonas aeruginosa. 6. Relationship between concomitant nonmucoid and mucoid strains from the respiratory tract in cystic fibrosis. Acta Pathologica. Microbiologica et Immunologica Scandinavica (B) 83. 553560.Google ScholarPubMed
Döring, G., Goldstein, W., Roll, A., SchiØtz, P. O., HØiby, N. & Botzenhart, K. (1985). Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infection and Immunity 49. 557562.CrossRefGoogle ScholarPubMed
Döring, G. & Haiby, N. (1983). Longitudinal study of immune response to Pseudomonas aeruginosa antigens in cystic fibrosis. Infection and Immunity 42, 197201.CrossRefGoogle ScholarPubMed
Döring, G., Obernesser, H. J.. Botzenhart, K., Flehmig, B., HØiby, N. & HØfmann, A. (1983). Proteases of Pseudomonas aeruginosa in cystic fibrosis. Journal of Infectious Diseases 147, 744750.CrossRefGoogle Scholar
Fonseca, K., MacDougall, J. & Pitt, T. L. (1986). Inhibition of Pseudomonas aeruginosa from cystic fibrosis by selective media. Journal of Clinical Pathology 39, 220222.CrossRefGoogle ScholarPubMed
Hardy, K. A., Mcgowan, K. L., Fisher, M. C. & Schidlow, D. V. (1986). Pseudomonas cepacia in the hospital setting: lack of transmission between cystic fibrosis patients. Journal of Pediatrics 109, 5154.CrossRefGoogle ScholarPubMed
HØiby, . Microbiology of lung infections in cystic fibrosis patients. Acta Paediatrica Scandinavica 301 (Supplementyes), 3354Google Scholar
HØiby, N., Döring, G. & SchiØtz, P. O. (1986). The role of immune complexes in the pathogenesis of bacterial infections. Annual Review of Microbiology 40, 2953.CrossRefGoogle ScholarPubMed
HØiby, N. & Rosendal, K. (1980). Epidemiology of Pseudomonas aeruginosa infections in cystic fibrosis. Acta Pathologica, Microbiologica et Immunologica Scandinavica (Byes) 88. 125131.Google Scholar
Kelly, N. M., Falkiner, F. R., Tempany, E., Fitzgerald, M. X., O'boyle, C. & Keane, C. T. (1982). Does pseudomonas cross-infection occur between cystic fibrosis patients? Lancet 2, 688690.CrossRefGoogle ScholarPubMed
Laraya-Cuasay, L. R., Cundy, K. R. & Huang, N. N. (1976). Pseudomonas carrier rates of patients with cystic fibrosis and of members of their families. Journal of Paediatrics 89, 2326.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrock, J.,(1982), Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
Marmur, J. (1960). Procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3, 208218.CrossRefGoogle Scholar
Ogle, J. W., Janda, J. M., Woods, D. E. & Vasil, M. L. (1987). Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa. Journal of Infectious Diseases 155, 119126.CrossRefGoogle ScholarPubMed
Pedersen, S. S., Koch, C., Hoiby, N. & Rosendal, K. (1986). An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis center. Journal of Antimicrobial Chemotherapy 17, 505516.CrossRefGoogle Scholar
Pitt, T. L. (1988). Epidemiological typing of Pseudomonas aeruginosa. European Journal of Clinical Microbiology and Infectious Diseases 7, 238247.CrossRefGoogle ScholarPubMed
Schaad, U. B., Wedgewood-Krucko, J., Suter, S. & Kraemer, R. (1987). Efficacy of inhaled amikacin as adjunct to intravenous combination therapy (ceftazidime and amikacin) in cystic fibrosis. Journal of Pediatrics 111, 599605.CrossRefGoogle ScholarPubMed
Seale, T. W., Thirkill, H., Tarpay, M., Flux, M. & Rennert, O. M. (1979). Serotypes and antibiotic susceptibilities of Pseudomonas aeruginosa isolates from single sputa of cystic fibrosis patients. Journal of Clinical Microbiology 9, 7278.CrossRefGoogle ScholarPubMed
Southern, E (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Speert, D. P. & Campbell, M. E. (1987). Hospital epidemiology of Pseudomonas aeruginosa from patients with cystic fibrosis. Journal of Hospital Infection 9, 1121.CrossRefGoogle ScholarPubMed
Speert, D. P., Lawton, D. & Damm, S. (1982). Communicability of Pseudomonas aeruginosa in a cystic fibrosis summer camp. Journal of Pediatrics 101, 227229.CrossRefGoogle Scholar
Thomassen, M. J., Demko, C. A. & Doershuk, C. F. (1987). Cystic fibrosis: a review of pulmonary infections and interventions. Pediatric Pulmonary 3, 334351.CrossRefGoogle ScholarPubMed
Thomassen, M. J., Demko, C. A., Doershuk, C. F. & Root, J. M. (1985). Pseudomonas aeruginosaisolates: comparison of isolates from campers and from sibling pairs with cystic fibrosis. Pediatric Pulmonary 1, 4045.CrossRefGoogle Scholar
Vasil, M., Chamberlain, C. & Grant, C. (1986). Molecular studies of Pseudomonas exotoxin A gene. Infection and Immunity 52, 538548.CrossRefGoogle ScholarPubMed
Vogt, D. (1959). Über den genenwärtigen Stand der Akzeleration in Bayern.. Archiv der Kinderheilkunde 159, 141145.Google Scholar
Wood, R. E., Boat, T. F. & Doershuk, C. F. (1976). Cystic fibrosis: state of the art. American Review of Respiratory Diseases 113, 833878.Google Scholar
Zierdt, C. H. & Williams, R. L. (1975). Serotyping of Pseudomonas aeruginosa from patients with cystic fibrosis of the pancreas. Journal of Clinical Microbiology 1, 521526.CrossRefGoogle ScholarPubMed
Zimakoff, J., Hoiby, N., Rosendal, K. & Guilbert, J. P. (1983). Epidemiology of Pseudomonas aeruginosa infection and the role of contamination of the environment in a cystic fibrosis clinic. Journal of Hospital Infection 4, 3140.CrossRefGoogle Scholar