We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[B87]
Berger, M.. Geometry. I. Springer-Verlag, Berlin, 1987.Google Scholar
[B74]
Blum, J. and Eisenberg, B.. Generalized summing sequences and the mean ergodic theorem. Proc. Amer. Math. Soc.42 (1974), 423–429.Google Scholar
[B04]
Bourbaki, N.. Integration. I. Springer, Berlin, 2004, Chs 1–6.Google Scholar
Galindo, J., Hernández, S. and Wu, T.-S.. Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups. Open Problems in Topology. II. Ed. Pearl, E.. Elsevier, Amsterdam, 2007, pp. 407–422.Google Scholar
[G79]
Graham, C. C. and Carruth McGehee, O.. Essays in Commutative Harmonic Analysis. Springer, New York, 1979.Google Scholar
[H63]
Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis. Vol. 1Springer, Berlin, 1963.Google Scholar
Knapp, A. W.. Lie Groups beyond an Introduction. Birkhäuser, Boston, 2002.Google Scholar
[K73b]
Kostant, B.. On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Sup. (4)6 (1973), 413–455.Google Scholar
[P83]
Petersen, K.. Ergodic Theory. Cambridge University Press, Cambridge, 1983.Google Scholar
[R05]
Rogers, K. M.. Sharp van der Corput estimates and minimal divided differences. Proc. Amer. Math. Soc.133 (2005), 3543–3550.CrossRefGoogle Scholar
[S93]
Stein, E. M.. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993.Google Scholar
[Z93]
Ziegler, F.. Subsets of ${R}^{n} $ which become dense in any compact group. J. Algebraic Geom.2 (1993), 385–387.Google Scholar
[Z96]
Ziegler, F.. Méthode des orbites et représentations quantiques. PhD Thesis, Université de Provence, Marseille, 1996, arXiv:1011.5056.Google Scholar