Published online by Cambridge University Press: 01 August 2008
We consider the quadratic family of maps given by fa(x)=1−ax2 with x∈[−1,1], where a is a Benedicks–Carleson parameter. For each of these chaotic dynamical systems we study the extreme value distribution of the stationary stochastic processes X0,X1,… , given by Xn=fan, for every integer n≥0, where each random variable Xn is distributed according to the unique absolutely continuous, invariant probability of fa. Using techniques developed by Benedicks and Carleson, we show that the limiting distribution of Mn=max {X0,…,Xn−1} is the same as that which would apply if the sequence X0,X1,… was independent and identically distributed. This result allows us to conclude that the asymptotic distribution of Mn is of type III (Weibull).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.