Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T17:35:07.185Z Has data issue: false hasContentIssue false

Geometry of KAM tori for nearly integrable Hamiltonian systems

Published online by Cambridge University Press:  12 February 2007

HENK BROER
Affiliation:
Instituut voor Wiskunde en Informatica, Rijksuniversiteit Groningen, Blauwborgje 3, 9747 AC Groningen, The Netherlands (e-mail: broer@math.rug.nl, f.takens@math.rug.nl)
RICHARD CUSHMAN
Affiliation:
Faculteit Wiskunde en Informatica, Universiteit Utrecht, Budapestlaan 6, 3584 CD Utrecht, The Netherlands (e-mail: cushman@math.uu.nl)
FRANCESCO FASSÒ
Affiliation:
Università di Padova, Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy (e-mail: fasso@math.unipd.it)
FLORIS TAKENS
Affiliation:
Instituut voor Wiskunde en Informatica, Rijksuniversiteit Groningen, Blauwborgje 3, 9747 AC Groningen, The Netherlands (e-mail: broer@math.rug.nl, f.takens@math.rug.nl)

Abstract

We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangian tori by gluing together local KAM conjugacies with the help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to the preservation of geometry, which allows us to define all non-trivial geometric invariants of an integrable Hamiltonian system (like monodromy) for a nearly integrable one.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)