Published online by Cambridge University Press: 09 October 2013
We study limit sets of stable cellular automata from a symbolic dynamics point of view, where they are a special case of sofic shifts admitting a steady epimorphism. We prove that there exists a right-closing almost-everywhere steady factor map from one irreducible sofic shift onto another one if and only if there exists such a map from the domain onto the minimal right-resolving cover of the image. We define right-continuing almost-everywhere steady maps, and prove that there exists such a steady map between two sofic shifts if and only if there exists a factor map from the domain onto the minimal right-resolving cover of the image. To translate this into terms of cellular automata, a sofic shift can be the limit set of a stable cellular automaton with a right-closing almost-everywhere dynamics onto its limit set if and only if it is the factor of a full shift and there exists a right-closing almost-everywhere factor map from the sofic shift onto its minimal right-resolving cover. A sofic shift can be the limit set of a stable cellular automaton reaching its limit set with a right-continuing almost-everywhere factor map if and only if it is the factor of a full shift and there exists a factor map from the sofic shift onto its minimal right-resolving cover. Finally, as a consequence of the previous results, we provide a characterization of the almost of finite type shifts (AFT) in terms of a property of steady maps that have them as range.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.