Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T10:22:44.231Z Has data issue: false hasContentIssue false

Periodic attractors of perturbed one-dimensional maps

Published online by Cambridge University Press:  05 June 2013

O. KOZLOVSKI*
Affiliation:
Mathematics Institute, University of Warwick, UK email O.Kozlovski@warwick.ac.uk

Abstract

In this paper we investigate how many periodic attractors maps in a small neighbourhood of a given map can have. For this purpose we develop new tools which help to make uniform cross-ratio distortion estimates in a neighbourhood of a map with degenerate critical points.

Type
Research Article
Copyright
© Cambridge University Press, 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Melo, W. and van Strien, S.. A structure theorem in one dimensional dynamics. Ann. of Math. 129 (3) (1989), 519546.CrossRefGoogle Scholar
de Melo, W. and van Strien, S.. One-Dimensional Dynamics. Springer, Berlin, 1993.CrossRefGoogle Scholar
Kaloshin, V. and Kozlovski, O. S.. A ${C}^{r} $ unimodal map with an arbitrary fast growth of the number of periodic points. Ergod. Th. & Dynam. Sys. 32 (01) (2011), 159165.CrossRefGoogle Scholar
Kozlovski, O. S.. Getting rid of the negative Schwarzian derivative condition. Ann. of Math. (2) 152 (3) (2000), 743762.Google Scholar
Kozlovski, O. S.. Hilbert–Arnold problem for one dimensional maps, 2012, in preparation.Google Scholar
Mañé, R.. Hyperbolicity, sinks and measure in one-dimensional dynamics. Commun. Math. Phys. 100 (1985), 495524.Google Scholar
Martens, M., de Melo, W. and van Strien, S.. Julia–Fatou–Sullivan theory for real one-dimensional dynamics. Acta Math. 168 (1992), 273318.Google Scholar
Sergeraert, F.. Une extension d’un théoreme de fonctions implicites de Hamilton. Mémoires de la SMF 46 (1976), 163171.Google Scholar
Singer, D.. Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35 (2) (1978), 260267.Google Scholar
van Strien, S. and Vargas, E.. Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Amer. Math. Soc. 17 (4) (2004), 749782.CrossRefGoogle Scholar