No CrossRef data available.
Article contents
Regularity at infinity of compact negatively curved manifolds
Published online by Cambridge University Press: 19 September 2008
Abstract
It is shown that three different notions of regularity for the stable foliation on the unit tangent bundle of a compact manifold of negative curvature are equivalent. Moreover if is a time-preserving conjugacy of geodesic flows of such manifolds M, N then the Lyapunov exponents at corresponding periodic points of the flows coincide. In particular Δ also preserves the Lebesgue measure class.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1994
References
REFERENCES
[B-F-L]Benoist, Y., Foulon, P. and Labourie, F.. Flots d'Anosov à distributions stable et instable diffèrentiables. Journal Amer. Math. Soc. 4 (1992), 33–74.Google Scholar
[C]Croke, C.. Rigidity for surfaces of non-positive curvature. Commun. Math. Helv. 65 (1990), 150–169.CrossRefGoogle Scholar
[F-O]Feldman, J. and Ornstein, D.. Semi-rigidity of horocycle flows over surfaces of variable negative curvature. Ergod. Th. & Dynam. Sys. 7 (1987), 49–72.CrossRefGoogle Scholar
[Gh]Ghys, E.. Flots d'Anosov dont des feuilletages stables sont diffèrentiables. Ann. Ecole Normale Sup. 20(1987), 251–270.CrossRefGoogle Scholar
[G]Gromov, M.. Three remarks on geodesic dynamics and fundamental group. Unpublished note.Google Scholar
[HI]Hamenstädt, U.. Time preserving conjugacies of geodesic flows. Ergod. Th. & Dynam. Sys. 12 (1992), 67–74.Google Scholar
[H2]Hamenstädt, U.. Regularity of time-preserving conjugacies for contact Anosov flows with C 1-Anosov splitting. Ergod. Th. & Dynam. Sys. 13 (1993), 65–72.Google Scholar
[H3]Hamenstädt, U.. A geometric characterization of negatively curved locally symmetric spaces. J. Diff. Geom. 34 (1991), 193–221.Google Scholar
[Hs]Hasselblatt, B.. Regularity of the Anosov splitting and horospheric foliations. Ergod. Th. & Dynam. Sys. To appear.Google Scholar
[H-JH]Heintze, E. and Hof, H.C. Im. Geometry of horospheres. J. Diff. Geom. 12 (1977), 481–491.Google Scholar
[H-P]Hirsch, M. and Pugh, C.. Smoothness of horocycle foliations. J. Dig. Geom. 10 (1975), 225–238.Google Scholar
[H-K]Hurder, S. and Katok, A.. Differentiability, rigidity and Godbillon—Vey classes for Anosov flows. Publ. IHES 72 (1990), 5–61.Google Scholar
[Kn1]Kanai, M.. Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations. Ergod. Th. & Dynam. Sys. 8 (1988), 215–240.CrossRefGoogle Scholar
[kN2]Kanai, M.. Differential geometric studies on dynamics of geodesic and frame flows. Jap. J. Math. 19 (1993), 1–30.CrossRefGoogle Scholar
[K]Katok, A.. Entropy and closed geodesies. Ergod. Th. & Dynam. Sys. 2 (1982), 339–366.CrossRefGoogle Scholar
[L-Y]Ledrappier, F. and Young, L.S.. The metric entropy of diffeomorphisms. Ann. Math. 122 (1985), 509–539.Google Scholar
[L-M-M]Llave, R. de la, Marco, J. and Moriyon, R.. Canonical perturbation theory of Anosov systems and regularity results for Livsic cohomology equation. Ann. Math. 123 (1986), 537–612.CrossRefGoogle Scholar
[O1]Otal, J.P.. Le spectre marqué des longeurs des surfaces à courbure négative. Ann. Math. 131 (1990), 151–162.CrossRefGoogle Scholar
[O2]Otal, J.P.. Sur la géometrie symplectique de l'espace desgéodésiques d'une variété a courbure négative. Rev. Mat. Jberoam. 8 (1992), 441–456.Google Scholar