Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T00:17:26.202Z Has data issue: false hasContentIssue false

Sinai–Ruelle–Bowen measures for N-dimensional derived from Anosov diffeomorphisms

Published online by Cambridge University Press:  19 September 2008

Maria Carvalho
Affiliation:
Universidade do Porto, Departamento de Matemática Pura, Praça Gomes Teixeira, 4000 Porto, Portugal

Abstract

This paper is about the existence of transitive non-hyperbolic attractors with corresponding SRB measures for arcs of diffeomorphisms crossing the boundary of the Axiom A systems, obtained through an elementary generic bifurcation (Hopf, saddle-node or flip) on a transitive Anosov diffeomorphism or an attracting basic set.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A, Sm]Abraham, R. & Smale, S.. Nongenericity of Ω-stability. Global Analysis, Proc. Symp. Pure Math. XIV (1970), 58.CrossRefGoogle Scholar
[B]Bowen, R.. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Springer Lecture Notes in Mathematics 470. Springer, Berlin, 1975.Google Scholar
[B, R]Bowen, R. & Ruelle, D.. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975), 181202.CrossRefGoogle Scholar
[C]Craizer, M.. Teoria Ergódica Das Transformaçōes Expansoras. Informes de Matematica, IMPA, 1985.Google Scholar
[E, R]Eckman, J. P. & Ruelle, D.. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (1985), 617656.CrossRefGoogle Scholar
[G, H]Guckenheimer, J. & Holmes, P.. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin, 1983.CrossRefGoogle Scholar
[Hi, Pu]Hirsch, M. & Pugh, C.. Stable Manifolds and Hyperbolic Sets. Global Analysis, Proc. Symp. Pure Math. XIV (1970), 133163.CrossRefGoogle Scholar
[Hi, Pu, S]Hirsch, M., Pugh, C. & Shub, M.. Invariant manifolds. Springer Lecture Notes in Mathematics 583. Springer, Berlin, 1977.Google Scholar
[K]Katok, A.. Lyapounov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. IHES 1 (1980), 137173.CrossRefGoogle Scholar
[L, Y]Ledrappier, F. & Young, L.-S.. The metric entropy of diffeomorphisms. Ann. Math. (1985), 509574.CrossRefGoogle Scholar
[M]Mañé, R.. Ergodic Theory and Differentiable Dynamics. Springer, Berlin, 1987.CrossRefGoogle Scholar
[Ma]Mañé, R.. A proof of Pesin's formula. Ergod. Th. & Dynam. Sys., 1 (1981), 95102.CrossRefGoogle Scholar
[Mr, Mc]Marsden, J. & McCracken, M.. The Hopf Bifurcation and its Applications. Appl. Math. Sci. vol 19, Springer, Berlin, 1976.CrossRefGoogle Scholar
[Mi]Misiurewicz, M.. Diffeomorphisms without any measure with maximal entropy. Bull. Polon. Scien. XXI (1973), 903910.Google Scholar
[N]Newhouse, S.. Continuity properties of Entropy. Ann. Math. 129 (1989), 215235.CrossRefGoogle Scholar
[N, P, T]Newhouse, S., Palis, J. & Takens, F.. Bifurcations and stability of families of diffeomorphisms. Pubic. Math. IHES 57 (1983), 771.Google Scholar
[P, T]Palis, J. & Takens, F.. Homoclinic Bifurcations: Hyperbolicity, Fractional Dimensions and Infinitely Many Sinks. Cambridge University Press, Cambridge, 1991.Google Scholar
[Pe]Pesin, Ya. Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR. Izv. 10 (1976), 12611305.CrossRefGoogle Scholar
[Pe, Si]Pesin, Ya & Sinai, Ya. Gibbs measures for partially hyperbolic attractors. Ergod. Th. & Dynam. Sys. 2 (1982), 416438.CrossRefGoogle Scholar
[Pu, S]Pugh, C. & Shub, M.. Ergodicity of Anosov actions. Invent. Math. 15 (1972), 123.CrossRefGoogle Scholar
[Ro, Y]Robinson, C. & Young, L.-S.. Nonabsolutely continuous foliations for an Anosov diffeomorphism. Invent. Math. 61 (1980), 159176.CrossRefGoogle Scholar
[R]Ruelle, D.. Small random perturbations of dynamical systems and the definition of attractors. Comment. Math. Phys. 82 (1981), 137151.CrossRefGoogle Scholar
[R, T]Ruelle, D. & Takens, F.. On the nature of turbulence. Commun. Math. Phys. 20 (1971), 167192.CrossRefGoogle Scholar
[Sm]Smale, S.. The Ω-stability theorem. Global Analysis, Proc. Symp. Pure. Maths. XIV (1970), 289297.CrossRefGoogle Scholar
[W]Walters, P.. An Introduction to Ergodic Theory. Springer, Berlin, 1982.CrossRefGoogle Scholar
[Wa]Walters, P.. Anosov diffeomorphisms are topologically stable. Topology 9 (1970), 7178.CrossRefGoogle Scholar
[Yo]Yomdin, Y.. Volume growth and entropy. Israel J. Math. 57 (1987), 285317.CrossRefGoogle Scholar
[Y]Young, Y.. Dimension, entropy and Lyapounov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109124.CrossRefGoogle Scholar