Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T01:36:49.846Z Has data issue: false hasContentIssue false

SURVEY Towards a global view of dynamical systems, for the C1-topology

Published online by Cambridge University Press:  31 May 2011

C. BONATTI*
Affiliation:
Institut de Mathématiques de Bourgogne, UMR 5584 du CNRS, Université de Bourgogne, Dijon 21004, France (email: bonatti@u-bourgogne.fr)

Abstract

This paper suggests a program for getting a global view of the dynamics of diffeomorphisms, from the point of view of the C1-topology. More precisely, given any compact manifold M, one splits Diff1(M) into disjoint C1-open regions whose union is C1-dense, and conjectures state that each of these open sets and their complements is characterized by the presence of:

  • either a robust local phenomenon;

  • or a global structure forbidding this local phenomenon.

Other conjectures state that some of these regions are empty. This set of conjectures draws a global view of the dynamics, putting in evidence the coherence of the numerous recent results on C1-generic dynamics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ab]Abdenur, F.. Generic robustness of spectral decompositions. Ann. Sci. École Norm. Sup. 36 (2003), 213224.Google Scholar
[ABCD]Abdenur, F., Bonatti, Ch., Crovisier, S. and Díaz, L. J.. Generic diffeomorphisms on compact surfaces. Fund. Math. 187(2) (2005), 127159.Google Scholar
[ABC]Abdenur, F., Bonatti, Ch. and Crovisier, S.. Nonuniform hyperbolicity for C 1-generic diffeomorphisms. Israel J. Math. to appear.Google Scholar
[AS]Abraham, R. and Smale, S.. Nongenericity of Ω-stability. Global Analysis I (Proceedings of Symposia in Pure Mathematics, 14). American Mathematical Society, Providence, RI, 1968, pp. 58.Google Scholar
[Ar1]Arnaud, M.-C.. Création de connexions en topologie C 1. Ergod. Th. & Dynam. Sys. 21 (2001), 339381.Google Scholar
[ABV]Alves, J., Bonatti, Ch. and Viana, M.. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140(2) (2000), 351398.Google Scholar
[AHK]Akin, E., Hurley, M. and Kennedy, J.. Dynamics of topologically generic homeomorphisms. Mem. Amer. Math. Soc. 164(783) (2003), viii+130.Google Scholar
[As]Asaoka, M.. Hyperbolic sets exhibiting C 1-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 136(2) (2008), 677686.Google Scholar
[BKR]Bamon, R., Kiwi, J. and Rivera, J.. Wild Lorenz like attractors. Preprint, 2006.Google Scholar
[BoBo]Bochi, J. and Bonatti, Ch.. Perturbation of the Lyapunov spectrum of periodic orbits. Preprint, 2010, arXiv:1004.5029.Google Scholar
[B]Bonatti, Ch.. Robust tangencies. Note of the mini-course, avaliable at: http://www.math.pku.edu.cn/teachers/gansb/conference09/BeijingAout2009.pdf.Google Scholar
[BC]Bonatti, Ch. and Crovisier, S.. Récurrence et généricité. Invent. Math. 158(1) (2004), 33104.Google Scholar
[BC2]Bonatti, Ch. and Crovisier, S.. Recurrence and genericity. C. R. Math. Acad. Sci. Paris 336 (2003), 839844.CrossRefGoogle Scholar
[BCDG]Bonatti, Ch., Crovisier, S., Díaz, L. J. and Gourmelon, N.. Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication. Preprint, arXiv:1011.2935.Google Scholar
[BD1]Bonatti, Ch. and Díaz, L. J.. Persistent nonhyperbolic transitive diffeomorphisms. Ann. of Math. (2) 143 (1996), 357396.Google Scholar
[BD2]Bonatti, Ch. and Díaz, L. J.. Connexions hétéroclines et généricité d’une infinité de puits ou de sources. Ann. Sci. École Norm. Sup. 32 (1999), 135150.Google Scholar
[BD3]Bonatti, Ch. and Díaz, L. J.. On maximal transitive sets of generic diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 96 (2003), 171197.Google Scholar
[BD4]Bonatti, Ch. and Díaz, L. J.. Aboundance of robust tangencies. Trans. Amer. Math. Soc. to appear.Google Scholar
[BD5]Bonatti, Ch. and Díaz, L. J.. Fragile cycles. Preprint, arXiv:1103.3255.Google Scholar
[BDK]Bonatti, Ch., Díaz, L. J. and Kiriki, S.. Robust heterodimensional cycles for hyperbolic continuations. Work in progress.Google Scholar
[BDP]Bonatti, Ch., Díaz, L. J. and Pujals, E. R.. A 𝒞1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. of Math. (2) 158 (2003), 355418.Google Scholar
[BDV]Bonatti, Ch., Díaz, L. J. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity (Encyclopaedia of Mathematical Sciences, 102). Springer, Berlin, 2005, p. xviii+384 (Mathematical Physics, III).Google Scholar
[BGW]Bonatti, Ch., Gan, Sh. and Wen, L.. On the existence of non-trivial homoclinic classes. Ergod. Th. & Dynam. Sys. 27 (2007), 14731508.Google Scholar
[BGLY]Bonatti, Ch., Gan, Sh., Li, M. and Yang, D.. Lyapunov stable classes and essential attractors. Work in progress.Google Scholar
[BLY2]Bonatti, Ch., Li, M. and Yang, D.. Robustly chain transitive singular attractors with singularities of different indices. Preprint, 2008.Google Scholar
[BLY]Bonatti, Ch., Li, M. and Yang, D.. On the existence of attractors. Preprint, 2009, ArXiv 0904.4393.Google Scholar
[BV]Bonatti, Ch. and Viana, M.. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115 (2000), 157193.Google Scholar
[BPV]Bonatti, Ch., Pumariño, A. and Viana, M.. Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris 325 (1997), 883888.Google Scholar
[Bo]Bowen, R.. Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.Google Scholar
[Ca]Carvalho, M.. Sinaï Ruelle Bowen measures for N-dimensional derived from Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 13 (1993), 2144.Google Scholar
[Co]Conley, C.. Isolated Invariant Sets and Morse Index (CBMS Regional Conference Series in Mathematics, 38). American Mathematical Society, Providence, RI, 1978.Google Scholar
[Cr]Crovisier, S.. Periodic orbits and chain recurrent sets of C 1-diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 104 (2006), 87141.Google Scholar
[Cr2]Crovisier, S.. Partial hyperbolicity far from homoclinic bifurcations. Preprint, 2008, ArXiv 0809.4965.Google Scholar
[Cr3]Crovisier, S.. Birth of homoclinic bifurcations: a model for the central dynamics of partially hyperbolic systems. Ann. of Math. (2) 172(3) (2010), 16411677.Google Scholar
[Cr4]Crovisier, S.. Perturbations de la dynamique de difféomorphismes en topologie C 1. Preprint, ArXiv 0912.2896.Google Scholar
[CP]Crovisier, S. and Pujals, E.. Essential hyperbolicity versus homoclinic bifurcations. Work in progress.Google Scholar
[DPU]Díaz, L. J., Pujals, E. R. and Ures, R.. Partial hyperbolicity and robust transitivity. Acta Math. 183 (1999), 143.Google Scholar
[D]Doering, C. I.. Persistently transitive vector fields on three dimensional manifolds. Proceedings on Dynamical Systems and Bifurcation Theory (Pitman Research Notes in Mathematics Series, 160). Logman Scientific & Technical, Harlow, 1987, pp. 5989.Google Scholar
[F]Franks, J.. Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc. 158 (1971), 301308.Google Scholar
[GW]Gan, G. and Wen, L.. Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent. Math. 164(2) (2006), 279315.Google Scholar
[Go]Gourmelon, N.. Generation of homoclinic tangencies by C 1-perturbations. Discrete Contin. Dyn. Syst. 26(1) (2010), 142.Google Scholar
[Ha]Hayashi, S.. Connecting invariant manifolds and the solution of the C 1-stability and Ω-stability conjectures for flows. Ann. of Math. (2) 145 (1997), 81137 and Ann. of Math. (2) 150 (1999),353–356.Google Scholar
[Ha2]Hayashi, S.. Diffeomorphisms in ℱ1(M) satisfy Axiom A. Ergod. Th. & Dynam. Sys. 12(2) (1992), 233253.Google Scholar
[Hu]Hurley, M.. Attractors: persistence, and density of their basins. Trans. Amer. Math. Soc. 269 (1982), 247271.Google Scholar
[KH]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. With a Supplementary Chapter by Katok and Leonardo Mendoza (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995, p. xviii+802.Google Scholar
[Ku]Kupka, Y.. Contribution à la théorie des champs génériques. Contrib. Differential Equations 2 (1963), 457484.Google Scholar
[Li]Liao, S.. Qualitative Theory of Differentiable Dynamical Systems. Science Press, Beijing, 1996, p. x+383; distributed by American Mathematical Society, Providence, RI.Google Scholar
[Ma1]Mañé, R.. Contributions to the stability conjecture. Topology 17 (1978), 386396.Google Scholar
[Ma]Mañé, R.. An ergodic closing lemma. Ann. of Math. (2) 116 (1982), 503540.Google Scholar
[Ma2]Mañé, R.. A proof of the C 1 stability conjecture. Publ. Math. Inst. Hautes Études Sci. 66 (1988), 161210.Google Scholar
[MP]Morales, C. and Pacífico, M. J.. Lyapunov stability of ω-limit sets. Discrete Contin. Dyn. Syst. 8 (2002), 671674.CrossRefGoogle Scholar
[MP2]Morales, C. and Pacífico, M. J.. A spectral decomposition for singular-hyperbolic sets. Pacific J. Math. 229(1) (2007), 223232.Google Scholar
[MPP]Morales, C., Pacífico, M. J. and Pujals, E.. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. of Math. (2) 160(2) (2004), 375432.CrossRefGoogle Scholar
[Mo]Moreira, C. G.. There are no C 1-stable intersections of regular Cantor sets. Acta Math. to appear.Google Scholar
[N]Newhouse, S.. Nondensity of axiom A(a) on S 2. Global Analysis (Berkeley, CA, 1968) (Proceedings of Symposia in Pure Mathematics, XIV). American Mathematical Society, Providence, RI, 1970, pp. 191202.Google Scholar
[N1]Newhouse, S.. Diffeomorphisms with infinitely many sinks. Topology 13 (1974), 918.Google Scholar
[N3]Newhouse, S.. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 101151.Google Scholar
[Pa]Palis, J.. A global view of dynamics and a conjecture on the denseness and finitude of attractors. Astérisque 261 (2000), 335347.Google Scholar
[PT]Palis, J. and Takens, F.. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations (Cambridge Studies in Advanced Mathematics, 35). Cambridge University Press, Cambridge, 1993.Google Scholar
[PV]Palis, J. and Viana, M.. High dimension diffeomorphisms displaying infinitely many sinks. Ann. of Math. (2) 140 (1994), 207250.Google Scholar
[Po]Poincaré, H.. Les méthodes Nouvelles de la Mécanique céleste. 1899, new edition by Les grands classiques Gauthier-Villars, librairie Blanchard, Paris, 1987.Google Scholar
[Pu]Pugh, C.. The closing lemma. Amer. J. Math. 89 (1967), 9561009.Google Scholar
[PS]Pujals, E. and Sambarino, M.. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. of Math. (2) 151(3) (2000), 9611023.Google Scholar
[HHTU]Rodriguez Hertz, F., Rodriguez Hertz, M. A., Tahzibi, A. and Ures, R.. A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms. Electron. Res. Announc. Math. Sci. 14 (2007), 7481.Google Scholar
[Sh]Shub, M.. Topological transitive diffeomorphism on T 4. Proceedings of the Symposium on Differential Equations and Dynamical Systems (Lecture Notes in Mathematics, 206). Springer, Berlin, 1971, p. 39.CrossRefGoogle Scholar
[Sh1]Shub, M.. Global Stability of Dynamical Systems. Springer, New York, 1987, p. xii+150.Google Scholar
[Si]Simon, R. C.. A three-dimensional Abraham–Smale example. Proc. Amer. Math. Soc. 34(2) (1972), 629630.Google Scholar
[Sm]Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar
[Sm2]Smale, S.. Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 97116.Google Scholar
[V]Vivier, T.. Flots robustement transitifs sur les variétés compactes. C. R. Acad. Sci. Paris 337 (2003), 791796.Google Scholar
[W2]Wen, L.. Homoclinic tangencies and dominated splittings. Nonlinearity 15 (2002), 14451469.Google Scholar
[W3]Wen, L.. Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles. Bull. Braz. Math. Soc. (N.S.) 35(3) (2004), 419452.Google Scholar
[WX]Wen, L. and Xia, Z.. C 1-connecting lemmas. Trans. Amer. Math. Soc. 352 (2000), 52135230.Google Scholar
[Y]Yang, J.. Lyapunov stable chain recurrent class. Preprint, 2007.Google Scholar