Article contents
Cut and project sets with polytopal window I: Complexity
Published online by Cambridge University Press: 20 February 2020
Abstract
We calculate the growth rate of the complexity function for polytopal cut and project sets. This generalizes work of Julien where the almost canonical condition is assumed. The analysis of polytopal cut and project sets has often relied on being able to replace acceptance domains of patterns by so-called cut regions. Our results correct mistakes in the literature where these two notions are incorrectly identified. One may only relate acceptance domains and cut regions when additional conditions on the cut and project set hold. We find a natural condition, called the quasicanonical condition, guaranteeing this property and demonstrate by counterexample that the almost canonical condition is not sufficient for this. We also discuss the relevance of this condition for the current techniques used to study the algebraic topology of polytopal cut and project sets.
MSC classification
- Type
- Original Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s) 2020
References
- 3
- Cited by