Published online by Cambridge University Press: 14 March 2017
Given a finite irreducible set of real $d\times d$ matrices
$A_{1},\ldots ,A_{M}$ and a real parameter
$s>0$, there exists a unique shift-invariant equilibrium state on
$\{1,\ldots ,M\}^{\mathbb{N}}$ associated to
$(A_{1},\ldots ,A_{M},s)$. In this paper we characterize the ergodic properties of such equilibrium states in terms of the algebraic properties of the semigroup generated by the associated matrices. We completely characterize when the equilibrium state has zero entropy, when it gives distinct Lyapunov exponents to the natural cocycle generated by
$A_{1},\ldots ,A_{M}$, and when it is a Bernoulli measure. We also give a general sufficient condition for the equilibrium state to be mixing, and give an example where the equilibrium state is ergodic but not totally ergodic. Connections with a class of measures investigated by Kusuoka are explored in an appendix.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.