Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T17:53:42.073Z Has data issue: false hasContentIssue false

Polymorphisms and adiabatic chaos

Published online by Cambridge University Press:  02 February 2010

A. NEISHTADT
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK Space Research Institute, Profsoyuznaya 84/32, Moscow, 117997, Russia
D. TRESCHEV
Affiliation:
Steklov Mathematical Institute, Gubkina 8, Moscow, 119991, Russia

Abstract

At the end of the last century Vershik introduced some dynamical systems, called polymorphisms. Systems of this kind are multivalued self-maps of an interval, where (roughly speaking) each branch has some probability. By definition, the standard Lebesgue measure should be invariant. Unexpectedly, some class of polymorphisms appeared in the problem of destruction of an adiabatic invariant after a multiple passage through a separatrix. We discuss ergodic properties of polymorphisms from this class.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, V. I., Kozlov, V. V. and Neishtadt, A. I.. Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin, 2006.CrossRefGoogle Scholar
[2]Cary, J. R., Escande, D. F. and Tennyson, J. L.. Adiabatic invariant change due to separatrix crossing. Phys. Rev. A 34(5) (1986), 42564275.CrossRefGoogle ScholarPubMed
[3]Krengel, U.. Ergodic Theorems. Walter de Gruyter, Berlin, 1985.CrossRefGoogle Scholar
[4]Neishtadt, A. I.. Passage through a separatrix in a resonance problem with a slowly-varying parameter. Prikl. Mat. Mekh. 39(4) (1975), 621632 (Engl. transl. J. Appl. Math. Mech. 39(4) (1975), 594–605).Google Scholar
[5]Neishtadt, A. I.. Change of an adiabatic invariant at a separatrix. Fiz. Plazmy 12(8) (1986), 9921000 (Engl. transl. Sov. J. Plasma Phys. 12 (1986), 568–573).Google Scholar
[6]Timofeev, A. V.. On the constancy of an adiabatic invariant when the nature of the motion changes. Zh. Ehksper. Teor. Fiz. 75(4) (1978), 13031308 (Engl. transl. Sov. Phys., JETP 48 (1978), 656–659).Google Scholar
[7]Vershik, A. M.. Multivalued mappings with invariant measure (polymorphisms) and Markov operators. Zap. Nauchn. Semin. LOMI 72 (1977), 2661 (Engl. transl. J. Sov. Math. 23 (1983), 2243–2266).Google Scholar
[8]Vershik, A. M.. Polymorphisms, Markov processes, and quasi-similarity. Discrete Contin. Dyn. Syst. 13(5) (2005), 13051324.CrossRefGoogle Scholar