Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T07:25:50.124Z Has data issue: false hasContentIssue false

On the structure of layers for singularly perturbed equations in the case of unbounded energy

Published online by Cambridge University Press:  15 August 2002

E. Sanchez–Palencia*
Affiliation:
Laboratoire de Modélisation en Mécanique, CNRS-Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France; sanchez@lmm.jussieu.fr.
Get access

Abstract

We consider singular perturbation variational problemsdepending on a small parameter ε. The right hand side is suchthat the energydoes not remain bounded as ε → 0. The asymptoticbehavior involves internallayers where most of the energy concentrates. Three examples are addressed,with limits elliptic, parabolic and hyperbolic respectively, whereas theproblems with ε > 0 are elliptic. In the parabolic and hyperboliccases, thepropagation of singularities appear as an integral property after integratingacross the layers.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

W. Eckhaus, Asymptotic analysis of singular perturbations. North-Holland, Amsterdam (1979).
I.M. Guelfand and G.E. Chilov, Les distributions. Dunod, Paris (1962).
Gérard, P. and Sanchez-Palencia, E., Sensitivity phenomena for certain thin elastic shells with edges. Math. Meth. Appl. Sci. 23 (2000) 379-399. 3.0.CO;2-0>CrossRef
A.M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems. Amer. Math. Soc. (1991).
P. Karamian and J. Sanchez-Hubert, Boundary layers in thin elastic shells with developable middle surface. Eur. J. Mech., A/Solids 21 (2002) 13-47. CrossRef
P. Karamian, J. Sanchez-Hubert and E. Sanchez-Palencia, Propagation of singularities and structure of the layers in shells. Hyperbolic case. Comp. and Structures (to appear).
J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Springer, Berlin (1973).
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
Lions, J.-L. and Sanchez-Palencia, E., Sensitivity of certain constrained systems and application to shell theory. J. Math. Pures Appl. 79 (2000) 821-838. CrossRef
Sanchez-Palencia, E., On a singular perturbation going out of the energy space. J. Math. Pures. Appl. 79 (2000) 591-602. CrossRef
E. Sanchez-Palencia, Singular perturbations going out of the energy space. Layers in elliptic and parabolic cases, in Proc. of the 4th european Conference on Elliptic and Parabolic Problems. Rolduc-Gaeta, edited by Bemelmans et al. World Scientific Press (2002).
M.I. Vishik and L. Lusternik, Regular degenerescence and boundary layer for linear differential equations with small parameter.Usp. Mat. Nauk 12 (1957) 1-122.