Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T02:05:56.466Z Has data issue: false hasContentIssue false

The steepest descent dynamical system with control. Applications to constrained minimization

Published online by Cambridge University Press:  15 March 2004

Alexandre Cabot*
Affiliation:
Laboratoire LACO, Faculté des Sciences, 123 avenue Albert Thomas, 87060 Limoges Cedex, France; alexandre.cabot@unilim.fr.
Get access

Abstract

Let H be a real Hilbert space, $\Phi_1: H\to \xR$ a convex function of class ${\mathcal C}^1$ that we wish to minimize under the convexconstraint S.A classical approach consists in following the trajectories of the generalizedsteepest descent system (cf.   Brézis [CITE]) appliedto the non-smooth function  $\Phi_1+\delta_S$ . Following Antipin [1], it is also possible to use a continuous gradient-projection system.We propose here an alternative method as follows:given a smooth convex function  $\Phi_0: H\to \xR$ whose critical points coincidewith Sand a control parameter $\varepsilon:\xR_+\to \xR_+$ tending to zero,we consider the “Steepest Descent and Control” system \[(SDC) \qquad \dot{x}(t)+\nabla \Phi_0(x(t))+\varepsilon(t)\, \nabla \Phi_1(x(t))=0,\] where the control ε satisfies $\int_0^{+\infty} \varepsilon(t)\, {\rm d}t =+\infty$ . This last condition ensures that ε “slowly” tends to 0. When H is finite dimensional, we then prove that $d(x(t), {\rm argmin}\kern 0.12em_S \Phi_1) \to 0\quad (t\to +\infty),$ and we give sufficient conditions under which  $x(t) \to \bar{x}\in \,{\rm argmin}\kern 0.12em_S \Phi_1$ .We end the paper by numerical experiments allowing to compare the (SDC) system with the other systems already mentioned.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antipin, A.S., Minimization of convex functions on convex sets by means of differential equations. Differ. Equ. 30 (1994) 1365-1375 (1995).
V. Arnold, Equations différentielles ordinaires. Éditions de Moscou (1974).
Attouch, H. and Cominetti, R., A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differ. Equ. 128 (1996) 519-540. CrossRef
Attouch, H. and Czarnecki, M.-O., Asymptotic control and stabilization of nonlinear oscillators with non isolated equilibria. J. Differ. Equ. 179 (2002) 278-310. CrossRef
H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution. Lect. Notes 5 (1972).
Bruck, R.E., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26. CrossRef
Cabot, A. and Czarnecki, M.-O., Asymptotic control of pairs of oscillators coupled by a repulsion, with non isolated equilibria. SIAM J. Control Optim. 41 (2002) 1254-1280. CrossRef
A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991).
W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra. Academic Press, New York (1974).
J.P. Lasalle and S. Lefschetz, Stability by Lyapounov's Direct Method with Applications. Academic Press, New York (1961).
Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597. CrossRef
H. Reinhardt, Equations différentielles. Fondements et applications. Dunod, Paris, 2 e edn. (1989).
A.N. Tikhonov and V.Ya. Arsenine, Méthodes de résolution de problèmes mal posés. MIR (1976).