Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T19:04:10.800Z Has data issue: false hasContentIssue false

An eddy current problem in terms of a time-primitiveof the electric field with non-local source conditions

Published online by Cambridge University Press:  17 April 2013

Alfredo Bermúdez
Affiliation:
Departamento de Matemática Aplicada, Universidad de Santiago de Compostela, 15706, Santiago de Compostela, Spain. alfredo.bermudez@usc.es
Bibiana López-Rodríguez
Affiliation:
Escuela de Matemáticas, Universidad Nacional de Colombia, sede Medellín, Colombia; blopezr@unal.edu.co
Rodolfo Rodríguez
Affiliation:
CI2MA, Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile; rodolfo@ing-mat.udec.cl
Pilar Salgado
Affiliation:
Departamento de Matemática Aplicada, Escola Politécnica Superior, Universidade de Santiago de Compostela, 27002, Lugo, Spain; mpilar.salgado@usc.es
Get access

Abstract

The aim of this paper is to analyze a formulation of the eddy current problem in terms of a time-primitive of the electric field in a bounded domain with input current intensities or voltage drops as source data. To this end, we introduce a Lagrange multiplier to impose the divergence-free condition in the dielectric domain. Thus, we obtain a time-dependent weak mixed formulation leading to a degenerate parabolic problem which we prove is well-posed. We propose a finite element method for space discretization based on Nédélec edge elements for the main variable and standard finite elements for the Lagrange multiplier, for which we obtain error estimates. Then, we introduce a backward Euler scheme for time discretization and prove error estimates for the fully discrete problem, too. Finally, the method is applied to solve a couple of test problems.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acevedo, R., Meddahi, S. and Rodríguez, R., An E-based mixed formulation for a time-dependent eddy current problem. Math. Comput. 78 (2009) 19291949. Google Scholar
Alonso Rodríguez, A., Hiptmair, R. and Valli, A., A hybrid formulation of eddy current problems. Numer. Methods Part. Differ. Equ. 21 (2005) 742-763. Google Scholar
Alonso Rodríguez, A., Hiptmair, R. and Valli, A., Mixed finite element approximation of eddy current problems. IMA J. Numer. Anal. 24 (2004) 255271. Google Scholar
Alonso, A. and Valli, A., An optimal decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68 (1999) 607631. Google Scholar
A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer–Verlag, Italia (2010).
Alonso Rodríguez, A. and Valli, A., Voltage and current excitation for time-harmonic eddy-current problems. SIAM J. Appl. Math. 68 (2008) 14771494. Google Scholar
Amrouche, C., Bernardi, C., Dauge, M. and Girault, V., Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823864. Google Scholar
Beranúdez, A., López-Rodríguez, B., Rodríguez, R. and Salgado, P., Equivalence between two finite element methods for the eddy current problem. C. R. Math. Acad. Sci. Paris, Series I 34 (2010) 769774. Google Scholar
Bermúdez, A., López-Rodríguez, B., Rodríguez, R. and Salgado, P., Numerical solution of transient eddy current problems with input current intensities as boundary data. IMA J. Numer. Anal. 32 (2012) 10011029. Google Scholar
Bermúdez, A., Rodríguez, R. and Salgado, P., A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. SIAM J. Numer. Anal. 40 (2002) 18231849. Google Scholar
Bermúdez, A., Rodríguez, R. and Salgado, P., Numerical analysis of electric field formulations of the eddy current model. Numer. Math. 102 (2005) 181201. Google Scholar
A. Bossavit, Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998).
Bossavit, A., Most general non-local boundary conditions for the Maxwell equation in a bounded region. COMPEL 19 (2000) 239245. Google Scholar
Buffa, A., Costabel, M. and Sheen, D., On traces for H(curl;Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845876. Google Scholar
Buffa, A., Maday, Y. and Rapetti, F., Applications of the mortar element method to 3D electromagnetic moving structures. Computational Electromagnetics, edited by C. Carstensen et al., Springer Verlag. Lect. Notes Comput. Sci. Eng. 28 (2003) 3550. Google Scholar
Emson, C.R.I., and Simkin, J., An optimal method for 3D eddy currents. IEEE Trans. Magn. 19 (1983) 24502452. Google Scholar
Fernandes, P. and Gilardi, G., Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957991. Google Scholar
Fernandes, P. and Perugia, I., Vector potential formulation for magnetostatic and modelling of permanent magnets. IMA J. Appl. Math. 66 (2001) 293318. Google Scholar
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer–Verlag, Berlin (1986).
Hiptmair, R. and Sterz, O., Current and voltage excitations for the eddy current model. Int. J. Numer. Model. 18 (2005) 121. Google Scholar
Kameari, A., Calculation of transient 3D eddy currents using edge elements. IEEE Trans. Magn. 26 (1990) 466469. Google Scholar
A. Kameari, Three dimensional eddy current calculation using edge elements for magnetic vector potential. Applied Electromagnetic in Materials, Pergamon Press, Oxford (1988) 225–236.
Kang, T., Chen, T., Zhang, H. and Kim, K.I., Improved Tψ nodal finite element schemes for eddy current problems. Appl. Math. Comput. 218 (2011) 287302. Google Scholar
Ma, C., The finite element analysis of a decoupled TΨ scheme for solving eddy-current problems. Appl. Math. Comput. 205 (2008) 352361. Google Scholar
G. Pichenot, F. Buvat, V. Maillot and H. Voillaume, Eddy current modelling for non destructive testing. Proc. of 16th World Conf. on NDT, Rapport DSR 31. Montreal, August 30 - September 3 (2004).
Weiß, B. and Bíró, O., On the convergence of transient eddy-current problems. IEEE Trans. Magn. 40 (2004) 957960. Google Scholar
A. Žensíšek, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. London, Academic Press (1990).
Zheng, W., Chen, Z. and Wang, L., An adaptive finite element method for the H-ψ formulation of time-dependent eddy current problems. Numer. Math. 103 (2006) 667689. Google Scholar