Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:40:22.183Z Has data issue: false hasContentIssue false

Sharp large deviations for Gaussian quadratic formswith applications

Published online by Cambridge University Press:  15 August 2002

Bernard Bercu
Affiliation:
Université Paris-Sud, bâtiment 425, 91405 Orsay Cedex, France; Bernard.Bercu@math.u-psud.fr.
Fabrice Gamboa
Affiliation:
Université Paul Sabatier, Toulouse, France; Gamboa@cict.fr.
Marc Lavielle
Affiliation:
Université René Descartes and Université Paris-Sud, France; Marc.Lavielle@math.u-psud.fr.
Get access

Abstract

Under regularity assumptions, we establish a sharp largedeviation principle for Hermitian quadratic forms ofstationary Gaussian processes. Our result is similar tothe well-known Bahadur-Rao theorem [2] on the samplemean. We also provide several examples of applicationsuch as the sharp large deviation properties ofthe Neyman-Pearson likelihood ratio test, of the sum of squares,of the Yule-Walkerestimator of the parameter of a stable autoregressive Gaussian process,and finally of the empirical spectral repartition function.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azencott R. and Dacunha-Castelle D., Séries d'observations irrégulières. Masson (1984).
Bahadur R. and Ranga Rao R., On deviations of the sample mean. Ann. Math. Statist.31 (1960) 1015-1027. CrossRef
Barndoff-Nielsen O.E. and Cox D.R., Asymptotic techniques for uses in statistics. Chapman and Hall, Londres (1989).
Barone P., Gigli A. and Piccioni M., Optimal importance sampling for some quadratic forms of A.R.M.A. processes. IEEE Trans. Inform. Theory41 (1995) 1834-1844.
Basor, E., A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28 (1979) 975-983. CrossRef
Basor, E., Asymptotic formulas for Toeplitz and Wiener-Hopf operators. Integral Equations Operator Theory 5 (1982) 659-665. CrossRef
Bercu, B., Gamboa, F. and Rouault, A., Large deviations for quadratic forms of stationary Gaussian processes. Stochastic Process. Appl. 71 (1997) 75-90. CrossRef
Book, S.A., Large deviation probabilities for weighted sums. Ann. Math. Statist. 43 (1972) 1221-1234. CrossRef
Bottcher A. and Silbermann. Analysis of Toeplitz operators. Springer, Berlin (1990).
Bouaziz, M., Testing Gaussian sequences and asymptotic inversion of Toeplitz operators. Probab. Math. Statist. 14 (1993) 207-222.
Bryc, W. and Dembo, A., Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab. 10 (1997) 307-332. CrossRef
Bryc W. and Smolenski W., On large deviation principle for a quadratic functional of the autoregressive process. Statist. Probab. Lett.17 (1993) 281-285.
Bucklew J.A., Large deviations techniques in decision, simulation, and estimation. Wiley (1990).
Bucklew J. and Sadowsky J., A contribution to the theory of Chernoff bounds. IEEE Trans. Inform. Theory39 (1993) 249-254. CrossRef
Coursol, J. and Dacunha-Castelle, D., Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci.Sér. I Math. 288 (1979) 769-770.
Cramér H., Random variables and probability distributions. Cambridge University Press (1970).
Dacunha-Castelle, D., Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens. C. R. Acad. Sci.Sér. I Math. 288 (1979) 225-228.
Dembo A. and Zeitouni O., Large deviations techniques and applications. Jones and Barblett Pub. Boston (1993).
Esseen, C., Fourier analysis of distribution functions. Acta Math. 77 (1945) 1-25. CrossRef
Gamboa F. and Gassiat E., Sets of superresolution and the maximum entropy method on the mean. SIAM J. Math. Anal.27 (1996) 1129-1152. CrossRef
Gamboa F. and Gassiat E., Bayesian methods for ill posed problems. Ann. Statist.25 (1997) 328-350.
Golinskii, B. and Ibragimov, I., On Szegös limit theorem. Math. USSR- Izv. 5 (1971) 421-444. CrossRef
Grenander V. and Szegö G., Toeplitz forms and their applications. University of California Press (1958).
Guyon X., Random fields on a network/ modeling, statistics and applications. Springer (1995).
Hartwig, R.E. and Fisher, M.E., Asymptotic behavior of Toeplitz matrices and determinants. Arch. Rational Mech. Anal. 32 (1969) 190-225. CrossRef
Howland, J., Trace class Hankel operators. Quart. J. Math. Oxford Ser. (2) 22 (1971) 147-159. CrossRef
Jensen J.L., Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16 (1995).
Johansson, K., On Szegös asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. 112 (1988) 257-304.
Lavielle M., Detection of changes in the spectrum of a multidimensional process. IEEE Trans. Signal Process.42 (1993) 742-749.
Lehmann E.L., Testing statistical hypotheses. John Wiley and Sons, New-York (1959).
Rudin W., Real and complex analysis. McGraw Hill International Editions (1987).
Taniguchi M., Higher order asymptotic theory for time series analysis. Springer, Berlin (1991).
Widom, H., On the limit block Toeplitz determinants. Proc. Amer. Math. Soc. 50 (1975) 167-173. CrossRef
Widom H., Asymptotic behavior of block Toeplitz matrices and determinants II. Adv. Math. 21 (1976).