No CrossRef data available.
Article contents
Densitometry and Thermometry of Starburst Galaxies
Published online by Cambridge University Press: 25 November 2011
Abstract
With a goal toward deriving the physical conditions in external galaxies, we present a survey of formaldehyde (H2CO) and ammonia (NH3) emission and absorption in a sample of starburst galaxies using the Green Bank Telescope. By extending well-established techniques used to derive the spatial density in star formation regions in our own Galaxy, we show how the relative intensity of the 110−111 and 211−212 K-doublet transitions of H2CO can provide an accurate densitometer for the active star formation environments found in starburst galaxies (cf. Mangum et al. 2008). Similarly, we employ the well-established technique of using the relative intensities of the (1,1), (2,2), and (4,4) transitions of NH3 to derive the kinetic temperature in starburst galaxies. Our measurements of the kinetic temperature constrained spatial density in our starburst galaxy sample represent the first mean density measurements made toward starburst galaxies. We note a disparity between kinetic temperature measurements derived assuming direct coupling to dust and those derived from our NH3 measurements which points to the absolute need for direct gas kinetic temperature measurements using an appropriate molecular probe. Finally, our spatial density measurements point to a rough constancy to the spatial density (104.5 to 105.5 cm-3) in our starburst galaxy sample. This implies that the Schmidt-Kennicutt relation between LIR and Mdense: (1) Is a measure of the dense gas mass reservoir available to form stars, and (2) Is not directly dependent upon a higher average density driving the star formation process in the most luminous starburst galaxies.
- Type
- Research Article
- Information
- Copyright
- © EAS, EDP Sciences 2011