Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T15:30:45.515Z Has data issue: false hasContentIssue false

Probing the models: Abundances for high-mass stars in binaries

Published online by Cambridge University Press:  25 February 2014

K. Pavlovski
Affiliation:
Department of Physics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
J. Southworth
Affiliation:
Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK
Get access

Abstract

The complexity of composite spectra of close binary star system makes study of the spectra of their component stars extremely difficult. For this reason there exists very little information on the photospheric chemical composition of stars in close binaries, despite its importance for informing our understanding of the evolutionary processes of stars. In a long-term observational project we aim to fill this gap with systematic abundance studies for the variety of binary systems. The core of our analysis is the spectral disentangling technique, which allows isolation of the individual component star spectra from the time-series of observed spectra. We present new results for high-mass stars in close binaries. So far, we have measured detailed abundances for 22 stars in a dozen detached binary systems. The parameter space for the stars in our sample comprises masses in the range 8–22 M, surface gravities of 3.1–4.2 (c.g.s.) and projected rotational velocities of 30–240 km s−1. Whilst recent evolutionary models for rotating single stars predict changes in photospheric abundances even during the main sequence lifetime, no star in our sample shows signs of these predicted changes. It is clear that other effects prevail in the chemical evolution of components in binary stars even at the beginning of their evolution.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnuolo, W.G., & Gies, D.R., 1991, ApJ, 376, 266CrossRef
Brott, I., de Mink, S.E., Cantiello, M., et al., 2011, A&A, 530, A115
de Mink, S.E., Cantiello, M., Langer, N., et al., 2009, A&A, 497, 243
de Mink, S.E., Langer, N., Izzard, R.G., Sana, H., & de Koter, A., 2013, ApJ, 764, 166CrossRef
Ekström, S., Georgy, C., Eggenberger, P., et al., 2012, A&A, 537, A146
Frischknecht, U., Hirschi, R., Meynet, G., et al., 2010, A&A, 522, A39
Garcia, E.V., Stassun, K.G., Hebb, L., et al., 2011, AJ, 142, 27CrossRef
Garcia, E.V., Stassun, K.G., & Torres, W., 2013, ApJ, 769, 114CrossRef
Garcia, E.V., Stassun, K.G., Pavlovski, K., et al., 2014, AJ, submitted
Guinan, E.F., Ribas, I., Fitzpatrick, E. L., et al., 2000, ApJ, 544, 409CrossRef
Hadrava, P., 1995, A&AS, 114, 393
Heger, A., & Langer, N., 2000, ApJ, 544, 1016CrossRef
Heger, A., Langer, N., & Woosley, S.E., 2000, ApJ, 528, 368CrossRef
Hensberge, H., Pavlovski, K., & Verschueren, W., 2000, A&A, 358, 553
Hunter, I., Brott, I., Langer, N., et al., 2009, A&A, 496, 841
Ilijić, S., Hensberge, H., Pavlovski, K., & Freyhammer, L.M., 2004, ASP CS, 318, 111
Köhler, K., Borzyszkowski, M., Brott, I., et al., 2012, A&A, 544, A76
Langer, N., 2012, ARA&A, 50, 107CrossRef
Martins, F., Escolano, C., Wade, G.A., et al., 2012, A&A, 538, A29
Martins, F., Mahy, L., Hillier, D.J., & Rauw, G., 2012, A&A, 538, A39
Mayer, P., Harmanec, P., & Pavlovski, K., 2013, A&A, 550, A2
Maeder, A., & Meynet, G., 2012, Rev. Mod. Phys., 84, 25CrossRef
Meynet, G., & Maeder, G., 2000, A&A, 361, 101
Morel, T., Hubrig, S., & Briquet, M., 2008, A&A, 481, 453
Nieva, F.M., & Przybilla, N., 2007, A&A
Nieva, F.M., & Przybilla, N., 2012, A&A
Palate, M., Rauw, G., Koenigsberger, G., & Moreno, E., 2013, A&A, 552, A39
Pavlovski, K., & Hensberge, H., 2005, A&A, 439, 309
Pavlovski, K., & Hensberge, H., 2010, ASP Conf. Ser., 415, 31
Pavlovski, K., & Southworth, J., 2009, MNRAS, 394, 1519CrossRef
Pavlovski, K., & Southworth, J., 2012, IAU Symp., 240, 55
Pavlovski, K., Tamajo, E., Koubský, P., et al., 2009, MNRAS, 400, 791CrossRef
Pilecki, B., Graczyk, D., Pietrzyński, G., et al., 2013, MNRAS, 436, 953CrossRef
Potter, A.T., Tout, C.A., & Eldridge, J.J., 2012, MNRAS, 419, 748CrossRef
Przybilla, N., Firnstein, M., Nieva, M.F., et al., 2010, A&A, 517, A38
Saesen, S., Carrier, F., Pigulski, A., et al., 2010, A&A, 515, A16
Sana, H., de Mink, S.E., de Koter, A., et al., 2012, Science, 337, 444CrossRef
Simon, K.P., & Sturm, E., 1994, A&A, 281, 286PubMed
Southworth, J., Maxted, P.F.L., & Smalley, B., 2004a, MNRAS, 351, 1277CrossRef
Southworth, J., Zucker, S., Maxted, P.F.L., & Smalley, B., 2004b, MNRAS, 355, 986CrossRef
Tamajo, E., Pavlovski, K., & Southworth, J., 2011, A&A, 526, A76
Torres, G., Andersen, J., & Giménez, A., 2010, A&ARv, 18, 67PubMed
Tkachenko, A., Aerts, C., Pavlovski, K., et al., 2012, MNRAS, 424, L21CrossRef
Tkachenko, A., Degroote, P., Aerts, C., et al., 2013, MNRAS, in press [arXiv:1312.3601]
Vrancken, M., Hensberge, H., David, M., & Verschueren, W., 1997, A&A, 320, 878