Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:25:38.467Z Has data issue: false hasContentIssue false

A mean-field model of superconducting vortices

Published online by Cambridge University Press:  26 September 2008

S. J. Chapman
Affiliation:
Mathematical Institute, 24–29 St. Giles', Oxford 0X1 3LB, UK
J. Rubinstein
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
M. Schatzman
Affiliation:
Analyse Numérique, U.R.A. 740 du C.N.R.S., Université Lyon l Claude-Bernard, 69622 Villeurbanne, France

Abstract

A mean-field model for the motion of rectilinear vortices in the mixed state of a type-II superconductor is formulated. Steady-state solutions for some simple geometries are examined, and a local existence result is proved for an arbitrary smooth geometry. Finally, a variational formulation of the steady-state problem is given which shows the solution to be unique.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chapman, S.J. 1995 Asymptotic analysis of the Ginzburg–Landau model of superconductivity: Reduction to a free boundary model. Quart. Appl. Math. (to appear).CrossRefGoogle Scholar
[2] Chapman, S. J., Howison, S. D. & Ockendon, J. R. 1992 Macroscopic models of superconductivity. SIAM Review 34 (4), 529560.CrossRefGoogle Scholar
[3] Keller, J. B. 1958 Propagation of a magnetic field into a superconductor. Phys. Rev. 111, 14971499.CrossRefGoogle Scholar
[4] Abrikosov, A. A. 1957 On the magnetic properties of superconductors of the second group. Soviet Phys. J.E.T.P. 5 (6), 11741182.Google Scholar
[5] Bolley, C. & Helffer, B. 1994 Rigorous results on Ginzburg–Landau models in a film submitted to an exterior parallel magnetic field. Preprint Ecole centrale de Nantes.Google Scholar
[6] Chapman, S.J. 1994 Nucleation of superconductivity in decreasing fields I. Euro. J. Appl. Math. 5, 449468.CrossRefGoogle Scholar
[7] Chapman, S.J. 1994 Nucleation of superconductivity in decreasing fields II. Euro. J. Appl. Math. 5, 469494.CrossRefGoogle Scholar
[8] Kleiner, W. H., Roth, L. M. & Autler, S. H. 1964 Bulk solution of Ginzburg–Landau equations for type-II superconductors: Upper critical field region. Phys. Rev. 133 (5A), 12261227.CrossRefGoogle Scholar
[9] Millman, M. H. & Keller, J. B. 1969 Perturbation theory of nonlinear boundary-value problems. J. Math. Phys. 10 (2), 342.CrossRefGoogle Scholar
[10] Odeh, F. 1967 Existence and bifurcation theorems for the Ginzburg–Landau equations. J. Math. Phys. 8(12), 23512356.CrossRefGoogle Scholar
[11] Chapman, S. J. 1995 Superheating field of type-11 superconductors. SIAM J. Appl. Math. 55 (5), 12331258.CrossRefGoogle Scholar
[12] Ginzburg, V. L. & Landau, L. D. 1950 On the theory of superconductivity. Soviet Phys. J.E.T.P. 20, 1064.Google Scholar
[13] Berger, M. S. & Chen, Y. Y. 1989 Symmetric vortices for the Ginzburg–Landau equations of superconductivity and the nonlinear desingularization phenomenon. J. Fund. Anal. 82, 259295.CrossRefGoogle Scholar
[14] Peres, L. & Rubinstein, J. 1993 Vortex dynamics in U(1) Ginzburg–Landau models. Physica D 64 (1–3): 299309.CrossRefGoogle Scholar
[15] Dorsey, A. 1992 Vortex motion and the Hall effect in type-II superconductors: a time dependent Ginzburg–Landau theory approach. Phys. Rev. B 46, 83768386.CrossRefGoogle ScholarPubMed
[16] Rubinstein, J. & Keller, J. B. 1989 Particle distribution functions in suspensions. Phys. Fluids Al, 16321641.CrossRefGoogle Scholar
[17] Carlson, N.-N. 1991 A topological defect model of superfluid vortex filaments. PhD Thesis, University of California, Berkeley.Google Scholar
[18] Crandall, M. G. & Rabinovich, P. H. 1973 Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rat. Mech. Anal. 52, 161180.CrossRefGoogle Scholar
[19] Gilbarg, D. N., & Trudinger, N. S. 1977 Elliptic Partial Differential Equations of Second Order. Springer-Verlag.CrossRefGoogle Scholar
[20] Kinderlehrer, D. & Nirenberg, L. 1977 Regularity in free boundary problems. Ann. Scuola Norm. Sup. Pisa 4, 373391.Google Scholar
[21] Gor'kov, L. P. & EĹiashberg, G. M. 1968 Generalization of the Ginzburg–Landau equations for non-stationary problems in the case of allows with paramagnetic impurities. Soviet Phys. J.E.T.P. 27(2), 328334.Google Scholar