Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T04:36:32.950Z Has data issue: false hasContentIssue false

Gelification and mass transport in a static non-isothermal waxy solution

Published online by Cambridge University Press:  01 February 2009

A. FASANO
Affiliation:
Dipartimento di Matematica ‘U. Dini’, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
L. FUSI
Affiliation:
Dipartimento di Matematica ‘U. Dini’, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
J. R. OCKENDON
Affiliation:
OCIAM, Mathematical Institute, 24-29 St. Giles, Oxford, OX1 3LB, UK
M. PRIMICERIO
Affiliation:
Dipartimento di Matematica ‘U. Dini’, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy

Abstract

We consider a solution of a mono-component oil and wax. The latter is dissolved in the oil if the temperature is above the so-called cloud point (which depends on the concentration) and it segregates in the form of solid crystals if temperature is below the cloud point. As the solid fraction of wax increases, the diffusivity of liquid wax in the oil decreases (gelification), eventually vanishing. We study a one-dimensional model where temperature is initially above the cloud point and then it is lowered to induce diffusion and gelification. We formulate the relevant mathematical problem (a free boundary problem), studying its well-posedness and showing some qualitative results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Azevedo, L. F. A. & Teixeira, A. M. (2003) A critical review of the modelling of wax deposition mechanism. Petroleum Sci. Technol. 21, 393408.CrossRefGoogle Scholar
[2]Bhat, N. V. & Mehrotra, A. K. (2006) Modeling of deposition from “waxy” mixtures in a pipeline under laminar flow conditions via moving boundary formulation. Ind. Eng. Chem. Res. 45, 87288737.CrossRefGoogle Scholar
[3]Cannon, J. R. (1984) The one-dimensional heat equation. In: Encyclopedia of Mathematics and Its Applications, Vol. 23, Addison-Wesley, Menlo Park, CA.Google Scholar
[4]Correra, S., Fasano, A., Fusi, L. & Primicerio, M. (2007) Modelling of wax diffusion in crude oils: The cold finger device. Appl. Math. Model. 31 (10), 22862298.Google Scholar
[5]Correra, S., Fasano, A., Fusi, L., Primicerio, M. & Rosso, F. (2007) Wax diffusivity under given thermal gradient: A mathematical model. Z. Angew. Math. Mech. 87 (1), 2436.Google Scholar
[6]Crowley, A. B. & Ockendon, J. R. (1977) A Stefan problem with a non-monotone boundary. J. Appl. Math. 20 (3), 269281.Google Scholar
[7]Fasano, A. (1998) Phase transition with supercooling. Boll. UMI 8 (1-B), 4969.Google Scholar
[8]Fasano, A. & Primicerio, M. (1979) General free-boundary problems for the heat equation, I. J. Math. Anal. Appl. 72, 247273.Google Scholar
[9]Fasano, A. & Primicerio, M. (1983) A critical case for the solvability of Stefan-like problems. Math. Meth. Appl. Sci. 5, 8496.CrossRefGoogle Scholar
[10]Fasano, A. & Primicerio, M. (2005) Temperature driven mass transport in concentrated saturated solutions. Prog. Nonlinear Differential Equations 61, 91108.Google Scholar
[11]Fasano, A. & Primicerio, M. (2005) Wax deposition in crude oils: A new approach. Rend. Mat. Accad. Lincei 16, 251263.Google Scholar
[12]Fasano, A. & Primicerio, M. (2006) Heat and mass transfer in non-isothermal partially saturated oil-wax solutions. In: Fergola, P., Capone, F., Gentile, M. & Guerriero, G. (editors), New Trends in Mathematical Physics, World Scientific, Singapore.Google Scholar
[13]Fasano, A., Primicerio, M., Howison, S. & Ockendon, J. (1990) Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension. Quart. Appl. Math. 48, 153168.CrossRefGoogle Scholar
[14]Fasano, A., Primicerio, M. & Lacey, A. A. (1981) New results on some classical parabolic free boundary problems. Quart. Appl. Math. 38, 439460.Google Scholar
[15]Friedman, A. (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[16]Kurz, W. & Fisher, D. J. (1986) Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland.Google Scholar
[17]Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer 12, 150158.Google Scholar
[18]Rubinstein, L. I. (1971) The Stefan Problem, AMS, Providence, RI.Google Scholar