Published online by Cambridge University Press: 26 September 2008
We consider an equilibrium problem for a thin inclusion in a shell. The faces of the inclusion are assumed to satisfy a non-penetration condition, which is an inequality imposed on the tangential shell displacements. The properties of the solution are studied, in particular, the smoothness of the stress field in the vicinity of the inclusion. The tangential displacements are proved to belong to the space H2 near the internal points of the inclusion. The character of the contact between the inclusion faces is described in terms of a suitable non-negative measure. The stability of the solution is investigated for small perturbations to the inclusion geometry.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.