Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:08:29.316Z Has data issue: false hasContentIssue false

On p-harmonic functions, convex duality and an asymptotic formula for injection mould filling

Published online by Cambridge University Press:  26 September 2008

Gunnar Aronsson
Affiliation:
Department of Mathematics, Linköping University, S-581 83 Linköping, Sweden

Abstract

This work treats the injection of certain thermoplastics into a planar mould cavity. The problem is to determine the filling pattern. It is assumed that the thermoplastic can be modelled as a non-Newtonian fluid of power-law type whose power-law exponent is relatively small (the pseudo-plastic case). The dependence of the viscosity on thermal variations is neglected. The mathematical description leads to a moving boundary problem, for which an asymptotic solution is found. According to this solution, the expansion of the polymer melt follows the level sets of an interior distance function, which is determined by the geometry of the mould, and the position of the injection point. The solution is easily computed and results of numerical experiments are given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aronsson, G. & Janfalk, U. (1992) On Hele–Shaw flow of power-law fluids. Euro. J. Applied Math. 3, 343366.CrossRefGoogle Scholar
[2]Hassager, O. & Lauridsen, T. L. (1988) Singular behaviour of power-law fluids in Hele–Shaw flow. J. Non-Newt. Fluid Mech. 29, 337346.CrossRefGoogle Scholar
[3]Ekeland, I. & Temam, R. (1976) Convex Analysis and Variational Problems. North-Holland.Google Scholar
[4]Shen, S. F. (1984) Simulation of polymeric flows in the injection moulding process. Int. J. Num. Methods in Fluids 4, 171183.CrossRefGoogle Scholar
[5]Menges, G., Lichius, U. & Bangert, H. (1980) Eine einfache Methode zur Vorausbestimmung des Fliessfrontverlaufes beim Spritzgiessen von Thermoplasten. Plastverarbeiter 31, 671676.Google Scholar
[6]Barnes, H. A., Hutton, J. F. & Walters, K. (1989) An Introduction to Rheology. Elsevier.Google Scholar
[7]Bird, R. B., Armstrong, R. C. & Hassager, O. (1987) Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics. Wiley.Google Scholar
[8]Astarita, G. & Marrucci, G. (1974) Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill.Google Scholar
[9]Begehr, H. & Gilbert, R. P. (1987) Non-Newtonian Hele–Shaw flows in n ≥ 2 dimensions. Nonlinear Analysis 11, 1747.CrossRefGoogle Scholar
[10]Gilbert, R. P. & Wen, G.-C. (1989) Free boundary problems occurring in planar fluid dynamics. Nonlinear Analysis 13, 285303.CrossRefGoogle Scholar
[11]King, J. R. (1995) Development of singularities in some moving boundary problems. Nottingham (to appear).CrossRefGoogle Scholar
[12]Thompson, B. W. (1968) Secondary flow in a Hele–Shaw cell. J. Fluid Mech. 31 (2), 379395.CrossRefGoogle Scholar
[13]Aronsson, G. (1992) Aspects of p-harmonic functions in the plane. In: Summer School in Potential Theory, Joensuu 1990. Published by the University of Joensuu 1992 (Editor Laine, I.).Google Scholar
[14]Aronsson, G. (1989) Representation of a p-harmonic function near a critical point in the plane. Manuscripta Mathematica 66, 7395.CrossRefGoogle Scholar
[15]Aronsson, G. (1988) On certain p-harmonic functions in the plane. Manuscripta Mathematica 61, 79101.CrossRefGoogle Scholar
[16]Aronsson, G. (1968) On the partial differential equation . Arkiv för Matematik 7, 395425.CrossRefGoogle Scholar
[17]Aronsson, G. (1967) Extension of functions satisfying Lipschitz conditions. Arkiv fö Matematik 6, 551561.CrossRefGoogle Scholar
[18]Aronsson, G. (1984) On certain singular solutions of the partial differential equation . Manuscripta Mathematica 47, 133151.CrossRefGoogle Scholar
[19]Bhattacharya, T., Di Benedetto, E. & Manfredi, J. (1989) Limits as p → ∞ of Δpup = f and related extremal problems. Rend. Sem. Math. Univ. Pol. Torino. Fascicolo Speciale 1989, Nonlinear PDEs.Google Scholar
[20]Evans, L. C. (1993) Estimates for smooth absolutely minimizing Lipschitz extensions. Electronic J. Dijf. Eq.Google Scholar
[21]Jensen, R. (1993) Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123, 5174.CrossRefGoogle Scholar
[22]Diaz, J. I. (1985) Nonlinear PDEs and free boundaries. Vol. I, Elliptic equations. Pitman.Google Scholar
[23]Zeidler, E. (1985) Nonlinear Functional Analysis and its Applications, Vol. III. Springer-Verlag.CrossRefGoogle Scholar
[24]Janfalk, U. (1996) Behaviour in the limit, as p → ∞, of minimizers of functionals involving p- Dirichlet integrals. SIAM J. Math. Anal. 27 (2), 341360.CrossRefGoogle Scholar
[25]Mavridis, H., Hrymak, A. N. & Vlachopoulos, J. (1986) Mathematical modeling of injection mold filling: a review. Advances in Polymer Technology 6 (4), 457466.CrossRefGoogle Scholar
[26]Tucker, C. L. III (1989) Fundamentals of Computer Modeling for Polymer Processing. Carl Hanser Verlag.Google Scholar
[27]Isayev, A. J. (1987) Injection and Compression Molding Fundamentals. Marcel Dekker.Google Scholar
[28]Pearson, J. R. A. & Richardson, S. M. (1983) Computational Analysis of Polymer Processing. Applied Science.CrossRefGoogle Scholar
[29]Hieber, C. A. & Shen, S. F. (1980) A finite element/finite-difference simulation of the injection- molding filling process. J. Non-Newt. Fluid Mech. 7, 132.CrossRefGoogle Scholar
[30]Kamal, M. R. & Lafleur, P. G. (1982) Computer simulation of injection molding. Polymer Engineering and Science 22, 10661074.CrossRefGoogle Scholar
[31]White, J. L. (1975) Fluid mechanical analysis of injection mold filling. Polymer Engineering and Science 15, 4450.CrossRefGoogle Scholar
[32]Advani, S. G. (1994) Flow and Rheology in Polymer Composites Manufacturing. Elsevier.Google Scholar
[33]Aronsson, G. (1994) Some properties of a distance function. Linkoping.Google Scholar
[34]King, J. R., Lacey, A. A. & Vazquez, J. L. (1996) Persistence of corners in free boundaries in Hele–Shaw Flow. To appear in Euro. J. Applied Math.Google Scholar
[35]Agassant, J. F., Avenas, P., Sergent, J.-Ph. & Carreau, P. J. (1991) Polymer Processing. Carl Hanser Verlag.Google Scholar
[36]Mitchell, J. S. B. & Papadimitriou, C. H. (1991) The weighted region problem. J. Assoc. Comput. Machinery 38 (1), 1873.CrossRefGoogle Scholar
[37]Sitters, C. W. M. (1988) Numerical simulation of injection molding. PhD Thesis, Eindhoven University of Technology.Google Scholar
[38]Subbiah, S., Trafford, D. L. & Güceri, S. J. (1989) Non-isothermal flow of polymers into two- dimensional, thin cavity molds. Int. J. Heat and Mass Transfer.CrossRefGoogle Scholar
[39]Boshouwers, G. & van der Werf, J. (1988) Inject 3, a simulation code for the filling stage of the injection moulding process of thermoplastics. PhD Thesis (for two persons!), Eindhoven University of Technology.Google Scholar