Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T21:25:06.388Z Has data issue: false hasContentIssue false

Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels

Published online by Cambridge University Press:  01 October 2008

A. SINGER
Affiliation:
Program in Applied Mathematics, Department of Mathematics, Yale University, 10 Hillhouse Ave., PO Box 208283, New Haven, CT 06520-8283, USA
D. GILLESPIE
Affiliation:
Department of Molecular Biophysics and Physiology, Rush Medical Center, 1750 West Harrison Street, Chicago, IL 60612, USA
J. NORBURY
Affiliation:
OCIAM, Mathematical Institute, Oxford University, 27–29 St Giles', Oxford OX1 3LB, UK
R. S. EISENBERG
Affiliation:
Department of Molecular Biophysics and Physiology, Rush Medical Center, 1750 West Harrison Street, Chicago, IL 60612, USA

Abstract

Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst–Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current–voltage (IV) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical IV curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages).

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barcilon, V., Chen, D.-P., Eisenberg, R. S. & Jerome, J. W. (1997)Qualitative properties of steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57 (3), 631648.Google Scholar
[2]Barthel, J., Krienke, H. & Kunz, W. (1998) Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer, New York.Google Scholar
[3]Bezanilla, F. & Armstrong, C. M. (1974) Gating currents of the sodium channels: Three ways to block them. Science. 183, 753754.CrossRefGoogle Scholar
[4]Bezanilla, F. & Stefani, E. (1994) Voltage-dependent gating of ionic channels. Annu. Rev. Biophys. Biomol. Struct. 23, 819846.CrossRefGoogle ScholarPubMed
[5]Blum, L., Vericat, F. & Fawcett, W. R. (1992) On the mean spherical approximation for hard ions and dipoles. J. Chem. Phys. 96, 3039.CrossRefGoogle Scholar
[6]Chapman, J., Norbury, J., Please, C. & Richardson, G. Ions in solutions and protein channels. In: Fifth Mathematics in Medicine Study Group, University of Oxford, September 2005, available online: http://www.maths.ox.ac.uk/ociam/Study-Groups/MMSG05/reports/ionreport.pdfGoogle Scholar
[7]Chhih, A., Bernard, O., Barthel, J. M. G. & Blum, L. (1994) Transport coefficients and apparent charges of concentrated electrolyte solutions: Equations for practical use. Ber. Bunsenges. Phys. Chem. 98, 15161525.CrossRefGoogle Scholar
[8]Durand-Vidal, S., Simonin, J.-P. & Turq, P. (2000) Electrolytes at Interfaces, Boston, Kluwer.Google Scholar
[9]Durand-Vidal, S., Turq, P., Bernard, O., Treiner, C. & Blum, L. (1996) New perspectives in transport phenomena in electrolytes. Phys. A 231, 123143.CrossRefGoogle Scholar
[10]Eisenberg, R. S. (1998) Ionic channels in biological membranes: Electrostatic analysis of a natural nano-tube. Contemp. Phys. 39, 447466.CrossRefGoogle Scholar
[11]Eisenberg, R. S. & Liu, W. (2007) Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38, 19321966.CrossRefGoogle Scholar
[12]Fawcett, W. R. (2004) Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details, Oxford University, New York.CrossRefGoogle Scholar
[13]Gillespie, D. (1999) A Singular Perturbation Analysis of the Poisson–Nernst–Planck System: Applications to Ionic Channels. PhD dissertation, Rush University, Chicago.Google Scholar
[14]Gillespie, D., Xu, L., Wang, Y. & Meissner, G. (2005) (De)constructing the ryanodine receptor: Modeling ion permeation and selectivity of the calcium release channel. J. Phys. Chem. B 109, 1559815610.CrossRefGoogle ScholarPubMed
[15]Hille, B. (2001) Ionic Channels of Excitable Membranes, 3rd ed., Sinauer Associates, Sunderland, MA, pp. 1–814.Google Scholar
[16]Liu, W. (2005) Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 65, 754766.CrossRefGoogle Scholar
[17]Markowich, P. A. (1984) A singular perturbation analysis of the fundamental semiconductor device equations. SIAM J. Appl. Math. 44 (5), 896928.CrossRefGoogle Scholar
[18]Markowich, P. A. (1986) The Stationary Semiconductor Device Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
[19]Markowich, P. A. & Ringhofer, C. A. (1984) A singularly perturbed boundary value problem modelling a semiconductor device. SIAM J. Appl. Math. 44 (2), 231256.CrossRefGoogle Scholar
[20]Markowich, P. A., Ringhofer, C. A. & Schmeiser, C. (1990) Semiconductor Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
[21]Nonner, W., Catacuzzeno, L. & Eisenberg, R. S. (2000) Binding and selectivity in L-type calcium channels: A mean spherical approximation. Biophys. J. 79, 19761992.CrossRefGoogle ScholarPubMed
[22]Nonner, W. & Eisenberg, R. S. (1998) Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type calcium channels. Biophys. J. 75 (3), 12871305.CrossRefGoogle ScholarPubMed
[23]Schuss, Z., Nadler, B. & Eisenberg, R. S. (2001) Derivation of PNP equations in bath and channel from a molecular model. Phys. Rev. E 64 (2–3), 036116.CrossRefGoogle ScholarPubMed
[24]Simonin, J.-P., Blum, L. & Turq, P. (1996) Real ionic solutions in the mean spherical approximation. 1. Simple salts in the primitive model. J. of Phys. Chem. 100, 77047709.CrossRefGoogle Scholar
[25]Siwy, Z., Powell, M. R., Kalman, E., Astumian, R. D. & Eisenberg, R. S. (2006) Negative incremental resistance induced by calcium in asymmetric nanopores. Nano Lett. 6, 473477.CrossRefGoogle ScholarPubMed
[26]Siwy, Z., Powell, M. R., Kalman, E., Trautmann, C. & Eisenberg, R. S. (2006) Calcium-induced voltage gating in single conical nanopores. Nano Lett. 6, 17291734.CrossRefGoogle ScholarPubMed
[27]Smith, G. R. & Sansom, M. S. P. (1998) Dynamic properties of Na+ ions in models of ion channels: A molecular dynamics study. Biophys. J. 75, 27672782.CrossRefGoogle ScholarPubMed
[28]Sze, S. M. (1981) Physics of Semiconductor Devices, John Wiley & Sons, New York.Google Scholar
[29]Tieleman, D. P. & Berendsen, H. J. C. (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF Porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys. J. 74, 27862801.CrossRefGoogle Scholar