Published online by Cambridge University Press: 16 July 2018
This paper is concerned with a fully non-linear variant of the Allen–Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. The main purposes of this paper are to prove the well-posedness, smoothing effect and comparison principle, to provide an equivalent reformulation of the equation as a parabolic obstacle problem and to reveal long-time behaviours of solutions. More precisely, by deriving partial energy-dissipation estimates, a global attractor is constructed in a metric setting, and it is also proved that each solution u(x,t) converges to a solution of an elliptic obstacle problem as t → +∞.
† G. Akagi is supported in part by JSPS KAKENHI Grant Numbers JP16H03946, JP16K05199, JP17H01095, in part by the Alexander von Humboldt Foundation and in part by the Carl Friedrich von Siemens Foundation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.