Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T17:29:19.043Z Has data issue: false hasContentIssue false

Linear Rayleigh–Bénard stability of a transversely isotropic fluid

Published online by Cambridge University Press:  25 June 2018

C. R. HOLLOWAY
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK email: Craig.Holloway@tessella.com, d.j.smith@bham.ac.uk, R.J.Dyson@bham.ac.uk
D. J. SMITH
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK email: Craig.Holloway@tessella.com, d.j.smith@bham.ac.uk, R.J.Dyson@bham.ac.uk Institute for Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
R. J. DYSON
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK email: Craig.Holloway@tessella.com, d.j.smith@bham.ac.uk, R.J.Dyson@bham.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suspended fibres significantly alter fluid rheology, as exhibited in for example solutions of DNA, RNA and synthetic biological nanofibres. It is of interest to determine how this altered rheology affects flow stability. Motivated by the fact thermal gradients may occur in biomolecular analytic devices, and recent stability results, we examine the problem of Rayleigh–Bénard convection of the transversely isotropic fluid of Ericksen. A transversely isotropic fluid treats these suspensions as a continuum with an evolving preferred direction, through a modified stress tensor incorporating four viscosity-like parameters. We consider the linear stability of a stationary, passive, transversely isotropic fluid contained between two parallel boundaries, with the lower boundary at a higher temperature than the upper. To determine the marginal stability curves the Chebyshev collocation method is applied, and we consider a range of initially uniform preferred directions, from horizontal to vertical, and three orders of magnitude in the viscosity-like anisotropic parameters. Determining the critical wave and Rayleigh numbers, we find that transversely isotropic effects delay the onset of instability; this effect is felt most strongly through the incorporation of the anisotropic shear viscosity, although the anisotropic extensional viscosity also contributes. Our analysis confirms the importance of anisotropic rheology in the setting of convection.

Keywords

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Cambridge University Press 2018

References

Acheson, D. J. (1990) Elementary Fluid Dynamics, Oxford University Press, Oxford, UK.Google Scholar
Batchelor, G. K. (1970) The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (03), 545570.Google Scholar
Chandrasekhar, S. (2013) Hydrodynamic and Hydromagnetic Stability, Courier Dover Publications, Mineola, New York, USA.Google Scholar
Cupples, G., Dyson, R. J. & Smith, D. J. (2017) Viscous propulsion in active transversely isotropic media. J. Fluid Mech. 812, 501524.Google Scholar
Dafforn, T. R., Rajendra, J., Halsall, D. J., Serpell, L. C. & Rodger, A. (2004) Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength Couette flow cell. Biophys. J. 86 (1), 404410.Google Scholar
Dominguez-Lerma, M. A., Ahlers, G. & Cannell, D. S. (1984) Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh–Bénard convection. Phys. Fluids 27 (4), 856860.Google Scholar
Drazin, P. G. (2002) Introduction to Hydrodynamic Stability, Cambridge University Press, Cambridge, UK.Google Scholar
Dyson, R. J., Green, J. E. F., Whiteley, J. P. & Byrne, H. M. (2015) An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture. J. Math. Biol. 72, 17751809.Google Scholar
Dyson, R. J. & Jensen, O. E. (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J. Fluid Mech. 655, 472503.Google Scholar
Ericksen, J. L. (1960) Transversely isotropic fluids. Colloid. Polym. Sci. 173 (2), 117122.Google Scholar
Goldstein, R. J. & Graham, D. J. (1969) Stability of a horizontal fluid layer with zero shear boundaries. Phys. Fluids 12 (6), 11331137.Google Scholar
Green, J. E. F. & Friedman, A. (2008) The extensional flow of a thin sheet of incompressible, transversely isotropic fluid. Eur. J. Appl. Math. 19 (3), 225258.Google Scholar
Hinch, E. J. & Leal, L. G. (1972) The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52 (04), 683712.Google Scholar
Hoepffner, J. (2007) Implementation of boundary conditions [online]. Accessed 3 August 2017. URL: http://www.fukagata.mech.keio.ac.jp/~jerome/web/boundarycondition.pdfGoogle Scholar
Holloway, C. R., Cupples, G., Smith, D. J., Green, J. E. F., Clarke, R. J. & Dyson, R. J. (2018) Influences of transversely isotropic rheology and translational diffusion on the stability of active suspensions. arXiv:1607.00316.Google Scholar
Holloway, C. R., Dyson, R. J. & Smith, D. J. (2015) Linear Taylor-Couette stability of a transversely isotropic fluid. Proc. R. Soc. Lond. A 471 (2178) 20150141.Google Scholar
Koschmieder, E. L. (1993) Bénard Cells and Taylor Vortices, Cambridge University Press, Cambridge, UK.Google Scholar
Kruse, K., Joanny, J. F., Jülicher, F., Prost, J. & Sekimoto, K. (2005) Generic theory of active polar gels: A paradigm for cytoskeletal dynamics. Euro. Phys. J. E 16 (1), 516.Google Scholar
Lagarias, J. C., Reeds, J. A., Wright, M. H. & Wright, P. E. (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9 (1), 112147.Google Scholar
Landau, L. D. & Lifshitz, E. M. (1986) Theory of Elasticity, 3rd ed., Pergamon Press, Oxford, UK.Google Scholar
Lee, M. E. M. & Ockendon, H (2005) A continuum model for entangled fibres. Eur. J. Appl. Math. 16 (2), 145160.Google Scholar
Marrington, R., Dafforn, T. R., Halsall, D. J., MacDonald, J. I., Hicks, M. & Rodger, A. (2005) Validation of new microvolume Couette flow linear dichroism cells. Analyst 130 (12), 16081616.Google Scholar
McLachlan, J. R. A., Smith, D. J., Chmel, N. P. & Rodger, A. (2013) Calculations of flow-induced orientation distributions for analysis of linear dichroism spectroscopy. Soft Matter 9 (20), 49774984.Google Scholar
Nordh, J., Deinum, J. & Nordén, B. (1986) Flow orientation of brain microtubules studies by linear dichroism. Eur. Biophys. J. 14 (2), 113122.Google Scholar
Rayleigh, L. (1916) On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32 (192), 529546.Google Scholar
Rogers, T. G. (1989) Squeezing flow of fibre-reinforced viscous fluids. J. Eng. Math. 23 (1), 8189.Google Scholar
Saintillan, D. & Shelley, M. J. (2013) Active suspensions and their nonlinear models. C. R. Phys. 14 (6), 497517.Google Scholar
Sutton, O. G. (1950) On the stability of a fluid heated from below. Proc. R. Soc. Lond. A 204 (1078), 297309.Google Scholar
Trefethen, L. N. (2000) Spectral Methods in MATLAB, Vol. 10, SIAM, Philadelphia, USA.Google Scholar