Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T14:21:41.691Z Has data issue: false hasContentIssue false

El gen del receptor CCK-A posiblemente está asociado con las alucinaciones auditivas en la esquizofrenia

Published online by Cambridge University Press:  12 May 2020

Get access

Resumen

En este estudio, se identificó un locus polimórfico de Pstl con dos alelos individuales, a saber, Al y A2, dentro del límite entre el intrón 1 y el exón 2 del gen del receptor tipo A de la colecistoquini-na (CCK). El locus polimórfico de Pstl se utilizó como marcador genético para estudiar su asociación con síntomas psicóticos en la esquizofrenia. Se encontró una diferencia significativa en la frecuencia alélica entre los pacientes esquizofrénicos con y sin alucinaciones auditivas (χ2 = 6,26, gl = 1, P = 0,012), y la relación de ventaja para la asociación alélica fue 2,21 (IC de 95% = 1,18-4,15), con una fracción atribuible de 0,1. La frecuencia de los genotipos A1-A1 y A1-A2 mostró una presencia mayor significativa en los pacientes esquizofrénicos con alucinaciones auditivas en comparación con los pacientes sin estos síntomas (χ2 = 5,45, gl = 1, P = 0,02), y la relación de ventaja para la asociación genotípica fue 2,27 (IC de 95% = 1,13-4,57), con una fracción atribuible de 0,177. La prueba de riesgo relativo de haplotipo basada en el haplotipo (HHRR) reveló una diferencia significativa entre los alelos transmitidos y no transmitidos en las familias nucleares de los pacientes esquizofrénicos con alucinaciones auditivas (χ2 = 4,54, gl = 1, P = 0,033), pero no en las familias de los pacientes esquizofrénicos sin ellas. El presente estudio indica que el gen del receptor CCK-A puede estar asociado con las alucinaciones auditivas en la esquizofrenia.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Albus, M, von Gellhorn, K, Münch, U, Naber, D, Ackenheil, MA.Double-blind study with ceruletide in chronic schizophrenic patients: biochemical and clinical results. Rsychiatr Res 1986; 19: 17.CrossRefGoogle ScholarPubMed
Andreasen, NC, Flaum, M, Swayze, VW, Tyrrell, G, Arndt, S.Positive and negative symptoms in schizophrenia: a critical reappraisal. Arch Gen Psychiatr 1990; 47: 615–21.CrossRefGoogle ScholarPubMed
Arinami, T, Itokawa, M, Enguchi, H, Tagaya, H, Yano, S, Shimizu, H, et al.Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet 1994; 343: 703–4.CrossRefGoogle ScholarPubMed
Bachus, SE, Hyde, TM, Herman, MM, Egan, MF, Kleinman, JE.Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J Psychiatr Res 1997; 31: 233–56.CrossRefGoogle ScholarPubMed
Cardno, AG, McGuffin, P.The molecular genetics of schizophrenia. Neuropathol Appl Neurobiol 1994; 20: 344–9.CrossRefGoogle ScholarPubMed
Crawley, JN.Choecystokinin-dopamine interactions. Trends Pharmacol Sci 1991; 12: 232–6.CrossRefGoogle ScholarPubMed
Deleon, J, Cuesta, MJ, Peralta, V.Delusions and hallucinations in schizophrenic patients. Psychopathology 1993; 26: 286–91.CrossRefGoogle Scholar
Ekblom, GH, Hallman, J, Oreland, J.Platelet monoamine oxidase activity in relation no alletes of dopamine D4 receptor and tyrosine hydroxylase genes. Acta Psychiatr Scand 1997; 96: 295300.Google Scholar
Hillman, H.A study of 131 patients with schizophrenia and provision for them. Int J Health Care Quality Assurance 1998; 11: 102–12.CrossRefGoogle Scholar
Gariano, RF, Graves, PM.A mechanism for the involvement of co-localized neuropeptides in the action of antipsychotic drugs. Biol Psychiatry 1989; 26: 303–14.CrossRefGoogle Scholar
Inoue, H, Iannotti, CA, Welling, CM, Veile, R, Donis-Keller, H, Permutt, MA.Human cholecystokinin type A receptor gene: cytogenetic localization, physical mapping, and Identification of two missense variants in patients with obesity and non-insulin-depend-ent diabetes mellitus (NIDDM). Genomics 1997; 42: 331–5.CrossRefGoogle Scholar
Jönsson, E, Brene, S, Geijer, Th, Terenius, L, Tylec, A, Persson, ML, et al.A search for association between schizophrenia and dopamine-related alleles. Eur Arch Psychiatr Clin Neurosci 1996; 246: 297304.CrossRefGoogle ScholarPubMed
Kaliwas, PW.Interactions between neuropeptides and dopamine neurones in the ventromedial mesencephalon. Neurosci Biobehav Rev 1985; 94: 573–87.CrossRefGoogle Scholar
Karayiorgou, M, Gogos, JA.A turning point in schizophrenia genetics. Neuron 1997; 19: 967–79.CrossRefGoogle ScholarPubMed
Nair, NPV, Lal, S, Bloom, DM.Cholecystokinin peptides, dopamine and schizophrenia - A review. Prog Neuro-Psychopharmacol Biol Psychiatry 1985; 9: 515–24.CrossRefGoogle ScholarPubMed
Nair, NPV, Lal, S, Bloom, DM.Cholecystokinin and schizophrenia. Prog Brain Res 1986; 65: 237–58.CrossRefGoogle Scholar
Nemeroff, CB.Neuropeptides and schizophrenia: a critical review. In: Tamminga, CA, Schulz, SC, eds. Advances in Neuropsychiatry and Psychopharmacology Vol I. New York: Raven Press; 1991. p. 7789.Google Scholar
Plomin, R, Owen, MJ, McGuffin, P.The genetic basis of complex human behaviors. Science 1994; 264: 1173–9.CrossRefGoogle ScholarPubMed
Rasmussen, K, Stockton, ME, Czachura, JF, Howbert, JJ.Cholecystokinin (CCK) and schizophrenia: the selective CCKb antagonist LY262691 decreases midbrain dopine unit activity. Eur J Pharmacol 1991; 209: 135–8.CrossRefGoogle ScholarPubMed
Song, I, Brown, DR, Wiltshire, RN, Gantz, I, Trent, JM, Yamada, T.The human gastrin/cholecystokinin type B receptor gene alternative splice donor site in exon 4 generates two variant mRNAs. Proc Nati Acad Sci USA 1993; 90: 9085–9.CrossRefGoogle ScholarPubMed
Terwilliger, JD, Ott, J.A haplotype-based haplotype relative risk’ approach to detecting allelic associations. Hum Hered 1992; 42: 337–46.CrossRefGoogle ScholarPubMed
Tsuang, MT, Faraone, SV.The case for heterogeneity in the etiology of schizophrenia. Schizophr Res 1995; 17: 161–75.CrossRefGoogle ScholarPubMed
Virgo, L, Humphries, C, Mortimer, A, Bames, T, Hirsch, S, de Belleroche, J.Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia. Biol Psychiatry 1995; 37: 694701.CrossRefGoogle Scholar
Wank, SA.Cholecystokinin receptors. Am J Physiol 1995; 269: G62846.Google ScholarPubMed
Williams, NM, Cardno, AG, Murphy, KC, Jones, LA, Asherson, P, McGuffin, P, et al.Association between schizophrenia and microsatellite polymorphism at the dopamine D5 receptor gene. Psychiatr Genet 1997; 7: 83–5.CrossRefGoogle ScholarPubMed
Woolf, B.On estimating the relation between blood group and disease. Ann Hum Genet 1955; 19: 251–3.CrossRefGoogle ScholarPubMed