Published online by Cambridge University Press: 01 July 2008
Growth and photosynthetic performance of banana (Musa sp.) grown in three levels of natural shade (33, 55 and 77% reduction in incoming radiation) were compared to an unshaded control treatment. Net CO2 assimilation rates generally decreased with increasing shade. Chlorophyll fluorescence revealed short-term dynamic photoinhibition under high light conditions but no evidence of sustained photoinhibitory damage to photosystem II. Dynamic photoinhibition decreased with increasing shade, with the greatest depression in the variable to maximal fluorescence ratio (Fv/Fm) occurring in unshaded plants during the middle of the day. Specific leaf area and leaf area ratio increased proportionately with increasing shade, whilst the chlorophyll a/b ratio decreased, reflecting a greater efficiency of light utilization under shady conditions. The optimum shade level for photosynthetic productivity would be one at which the level of photosynthetic photon flux density (PPFD) is high enough to saturate CO2 assimilation but low enough to induce shade acclimation and to reduce photoinhibition. Under the conditions studied here, the saturation level of PPFD was around 1000 μmol m−2 s−1, a light level typical of the tree-based intercropping systems in which banana is commonly grown in the tropics.