Published online by Cambridge University Press: 03 October 2008
The irrigation water treatments in three experiments were based on a ‘water duty’ principle. One cosec of water was assumed to be available to irrigate 96, 211, 326 or 442 acres, representing minimum irrigation cycle times of 5, 11, 17 and 23 days respectively. Each experiment included a rainfed control treatment. The plots were watered as indicated by a soil moisture profit and loss account, but never more frequently than the minimum cycle time would allow. The results showed that maximum productivity could be achieved on a sand when I cosec of water was used to irrigate approximately 200 acres, but on clay maximum productivity was obtained with the largest water duty (442 ac/cusec). Net photosynthetic efficiency reached 3·9 per cent in the most heavily irrigated crops, and rainfall efficiency fell from about 85 per cent for rainfed conditions to about 50 per cent when the maximum amount of irrigation water was applied.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.