Published online by Cambridge University Press: 29 May 2014
Soit $X=\mathcal{M}(\mathscr{A})$ un espace affinoïde et soient $f,g\in \mathscr{A}$. Nous étudions les ensembles de composantes connexes des espaces définis par une inégalité de la forme $|f|\le r\, |g|$, avec $r\ge 0$. Nous montrons qu’il existe une partition finie de $\mathbf{R}_{+}$ en intervalles sur lesquels ces ensembles sont canoniquement en bijection et que les bornes de ces intervalles appartiennent à $\sqrt{\rho (\mathscr{A})}$.
On the connected components of a family of$\boldsymbol {p}$-adic analytic spaces. Let $X=\mathcal{M}(\mathscr{A})$ be an affinoid space and let $f,g\in \mathscr{A}$. We study the sets of connected components of the spaces defined by an inequality of the form $|f|\le r\, |g|$, with $r\ge 0$. We prove that there exists a finite partition of $\mathbf{R}_{+}$ into intervals where those sets are canonically in bijection and that the bounds of those intervals belong to $\sqrt{\rho (\mathscr{A})}$.