Published online by Cambridge University Press: 19 June 2017
Deninger et Werner ont développé un analogue pour les courbes $p$-adiques de la correspondance classique de Narasimhan et Seshadri entre les fibrés vectoriels stables de degré
$0$ et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, ils ont associé fonctoriellement à chaque fibré vectoriel sur une courbe
$p$-adique, dont la réduction est fortement semi-stable de degré
$0$, une représentation
$p$-adique du groupe fondamental de la courbe. Ils se sont posé quelques questions : leur foncteur est-il pleinement fidèle ? La cohomologie des systèmes locaux fournis par celui-ci admet-elle une filtration de Hodge-Tate ? Leur construction est-elle compatible avec la correspondance de Simpson
$p$-adique développée par Faltings ? Nous répondons à ces questions dans cet article.
Deninger and Werner developed an analogue for $p$-adic curves of the classical correspondence of Narasimhan and Seshadri between stable bundles of degree
$0$ and unitary representations of the topological fundamental group for a complex smooth proper curve. Using parallel transport, they associated functorially to every vector bundle on a
$p$-adic curve whose reduction is strongly semi-stable of degree
$0$ a
$p$-adic representation of the fundamental group of the curve. They asked several questions: whether their functor is fully faithful; whether the cohomology of the local systems produced by this functor admits a Hodge–Tate filtration; and whether their construction is compatible with the
$p$-adic Simpson correspondence developed by Faltings. We answer these questions in this article.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.