Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T17:28:11.415Z Has data issue: false hasContentIssue false

In vitro assessment of phytochemicals, antioxidant and DNA protective potential of wild edible fruit of Elaeagnus latifolia Linn

Published online by Cambridge University Press:  11 July 2014

Sourav Panja
Affiliation:
Div. Mol. Med., Bose Inst., P-1/12 C.I.T. Scheme VII-M, Kolkata-700054, India,. mandaln@rediffmail.com, nripen@jcbose.ac.in
Dipankar Chaudhuri
Affiliation:
Div. Mol. Med., Bose Inst., P-1/12 C.I.T. Scheme VII-M, Kolkata-700054, India,. mandaln@rediffmail.com, nripen@jcbose.ac.in
Nikhil Baban Ghate
Affiliation:
Div. Mol. Med., Bose Inst., P-1/12 C.I.T. Scheme VII-M, Kolkata-700054, India,. mandaln@rediffmail.com, nripen@jcbose.ac.in
Ha Le Minh
Affiliation:
Lab. Pharm. Chem., Inst.Nat. Prod. Chem., Vietnam Acad. Sci. Technol., 18 Hoang Quoc Viet Street, Hanoi, Vietnam
Nripendranath Mandal*
Affiliation:
Div. Mol. Med., Bose Inst., P-1/12 C.I.T. Scheme VII-M, Kolkata-700054, India,. mandaln@rediffmail.com, nripen@jcbose.ac.in
*
* Correspondence and reprints
Get access

Abstract

Introduction. Elaeagnus latifolia Linn. is a type of wild edible fruit found in northeast India, Thailand and also in Vietnam. Although the fruit is reported to be a source of vitamins, minerals, essential fatty acids and other bioactive compounds, only a few studies have been concerned with the antioxidant activity of this plant. Materials and methods. Our study revealed in vitro antioxidant and free radical scavenging activity of 70% methanolic extract of Elaeagnus latifolia Linn. (ELME). Various tests including identification and quantification of phytochemicals, total antioxidant activity, hydroxyl radical, superoxide radical, singlet oxygen, hypochlorous acid scavenging, reducing power and DNA protection assays were performed. Results and discussion. Among the tests, ELME scavenged superoxide radical [IC50 = (150.78 ± 4.2) μg×mL–1], hydroxyl radical [IC50 = (238.09 ± 11.63) μg×mL–1] and protected pUC18 DNA [P50 = (695.91 ± 15.84) μg×mL–1]; P50 signifies the concentration for 50% protection . The fruit is found to be a source of minute amounts of carbohydrates, ascorbic acid, tannins, phenolics and flavonoids. HPLC data showed that purpurin, tannic acid, quercetin, catechin, reserpine and rutin are present in ELME. Conclusion. Our results provide evidence that 70% methanol extract of E. latifolia Linn. acts as a promising antioxidant as well as DNA protector, which is partly due to the phenolic and flavonoid compounds present in it.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tiwari, A., Imbalance in antioxidant defence and human disease: multiple approach of natural antioxidants therapy, Curr. Sci. 81 (2001) 11791187.Google Scholar
Henle, E.S., Linn, S., Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide, J. Biol. Chem. 272 (1997) 1909519098.CrossRefGoogle ScholarPubMed
Marnett, L.J., Oxyradicals and DNA damage, Carcinogenesis 21 (2000) 361370.CrossRefGoogle ScholarPubMed
Retsky, K.L., Freeman, M.W., Frei, B., Ascorbic acid oxidation product(s) protect human low-density lipoprotein against atherogenetic modification. Anti-rather than prooxidant activity of vitamin C in the presence of transitionmetal ions, J. Biol. Chem. 268 (1993) 13041309.Google Scholar
Braca, A., Sortino, C., Politi, M., Morelli, I., Mendez, J., Antioxidant activity of flavonoids from Licania licaniaeflora, J. Ethnopharmacol. 79 (2002) 379381.CrossRefGoogle ScholarPubMed
Macedo, L.F., Rogero, M.M., Guimarães, J.P., Granato, D., Lobato, L.P., Castro, I.A., Effect of red wines with different in vitro antioxidant activity on oxidative stress of high-fat diet rats, Food. Chem. 137 (2013) 122129.CrossRefGoogle Scholar
Alezandro, M.R., Granato, D., Genovese, M. I., Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats, Food. Res. Int. 54 (2013) 650659.CrossRefGoogle Scholar
Kahl, R., Kappus, H., Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E, Z. Lebensm. Unters. Forsch. 196 (1993) 329338.CrossRefGoogle ScholarPubMed
Patel, R.K., Singh, A., Deka, B.C., Soh-Shang (Elaeagnus latifolia): an under-utilized fruit of north east region needs domestication, ENVIS, Bull. Himalayan Ecol. 16 (2008) 12.Google Scholar
Harborne J.B., Baxter H., Moss G.P., Phytochemical dictionary: a handbook of bioactive compounds from plants, Taylor & Francis Ltd., London, U.K., 1999.
Kokate C.K., Purohit A.P., Gokhale S.B., Test book of Pharmacognosy, Nirali Prakashan, Pune, India, 2003.
Das, A., Chaudhuri, D., Mandal, N., Chatterjee, A., Study of antioxidant and reactive oxygen species scavenging activity of the edible tuber of “Greater Yam” (Dioscorea alata L.) from North-East India, J. Asian Pharm. Clin. 5 (2012) 7484.Google Scholar
Ghate, N.B., Chaudhuri, D., Mandal, N., In vitro assessment of Tinospora cordifolia stem for its antioxidant, free radical scavenging and DNA protective potentials, Int. J. Pharm. Bio. Sci. 4 (2013) 373388.Google Scholar
Chaudhuri, D., Ghate, N.B., Sarkar, R., Mandal, N., Phytochemical analysis and evaluation of antioxidant and free radical scavenging activity of Withania somnifera root, Asian J. Pharm. Clin. Res. 5 (2012) 193199.Google Scholar
Sarkar, R., Hazra, B., Mandal, N., Anti-oxidative protection against iron overloaded-induced liver damage in mice by Cajanus cajan (L.) Millsp leaf extract, Indian J. Exp. Biol. 51 (2013) 165173.Google Scholar
Hazra, B., Sarkar, R., Biswas, S., Mandal, N., Antioxidant and iron chelating potential of Pongammia pinnata and its role in preventing free radical induced oxidative damage in plasmid DNA, Int. J. Phytomed. 3 (2011) 240253.Google Scholar
Hazra, B., Biswas, S., Mandal, N., Antioxidant and free radical scavenging activity of Spondias pinnata, BMC Compl. Altern. Med. 8 (2008) 63.CrossRefGoogle Scholar
Beckman, J.S., Chen, H., Ischiropulos, H., Crow, J.P., Oxidative chemistry of peroxynitrite, Meth. Enzymol. 233 (1994) 229240.CrossRefGoogle ScholarPubMed
Hermes-Lima, M., Nagy, E., Ponka, P., Schulman, H.M., The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against OH-mediated strand breaks, Free Rad. Biol. Med. 25 (1998) 875880.CrossRefGoogle ScholarPubMed
Finkel, T., Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing, Nature 408 (2000) 239247.CrossRefGoogle Scholar
Rop, O., Mlcek, J., Jurikova, T., Sochor, J., Kizek, R., Antioxidant properties of saskatoon berry (Amelanchier alnifolia Nutt.) fruits, Fruits 68 (2013) 435444.CrossRefGoogle Scholar
Lim, Y.S., Lee, S.S.H., Tan, B.C., Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts, Fruits 68 (2013) 483489.Google Scholar
Yildirim, A., Mavi, A., Oktay, M., Kara, A.A., Algur, O.F., Bilaloglu, V., Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf ex DC), sage (Savia triloba L.), and black tea (Camellia sinensis) extracts, J. Agric. Food Chem. 48 (2000) 50305034.CrossRefGoogle Scholar
Kessler, M., Ubeaud, G., Jung, L., Anti- and pro-oxidant activity of rutin and quercetin derivatives, J. Pharm. Pharmacol. 55 (2003) 131142.CrossRefGoogle ScholarPubMed
Weisburger, J.H., Eat to live, not live to eat, Nutrition 16 (2001) 767773.CrossRefGoogle ScholarPubMed
Jesus, N.Z.T., Falcao, H.S., Gomes, I.F., Leite, T.J.A., Lima, G.R.M., Barbosa-Filho, J.M., Tavares, J.F., Silva, M.S., Athayde-Filho, P.F., Batista, L.M., Tannins, peptic ulcer and related mechanisms, Int. J. Mol. Sci. 13 (2012) 32033228.CrossRefGoogle ScholarPubMed
Pickhardt, M., Gazova, Z., Bergen, V.M., Khlistunova, I., Wang, Y., Hascher, A., Mandelkow, E.M., Biernat, J., Mandelkow, E., Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells, J. Biol. Chem. 280 (2005) 36283635.CrossRefGoogle ScholarPubMed
Jeremić, S.R., Šehović, S.F., Manojlović, N.T., Marković, Z.S., Antioxidant and free radical scavenging activity of purpurin, Monatsh. Chem. 143 (2012) 427435.CrossRefGoogle Scholar
Gülçina, İ., Huyutb, Z., Elmastaşc, M., Hassan, Y.A.E., Radical scavenging and antioxidant activity of tannic acid, Arab. J. Chem. 3 (2010) 4353.CrossRefGoogle Scholar
Zhang, M., Swarts, S.G., Yin, L., Liu, C., Tian, Y., Cao, Y., Swarts, M., Yang, S., Zhang, S.B., Zhang, K., Ju, S., Olek, D.J.J., Schwartz, L., Keng, P.C., Howell, R., Zhang, L., Okunieff, P., Antioxidant properties of quercetin, Adv. Exp. Med. Biol. 701 (2011) 283289.CrossRefGoogle ScholarPubMed
Kosanović, M.M., Šeruga, M., Jakobek, L., Novak, I., Electrochemical and antioxidant properties of (+)-catechin, quercetin and rutin, Croat. Chem. Acta 83 (2010) 197207.Google Scholar
Begum, S., Naqvi, S.Q., Ahmed, A., Tauseef, S., Siddiqui, B.S., Antimycobacterial and antioxidant activities of reserpine and its derivatives, Nat. Prod. Res. 26 (2012) 20842088.Google ScholarPubMed
Koleva, I.I., Van Beek, T.A., Linssen, J.P.H., de Groot, A., Evstatieva, L.N., Screening of plant extracts for antioxidant activity: a comparative on three testing methods, Phytochem. Anal. 13 (2002) 817.CrossRefGoogle ScholarPubMed
Goyal, A.K., Mishra, T., Bhattacharya, M., Kar, P., Sen, A., Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India, J. Biosci. 38 (2013) 797803.CrossRefGoogle ScholarPubMed
Halliwell, B., Reactive oxygen species in living systems: Source, biochemistry, and role in human disease, Am. J. Med. 91 (1991) S14S22.CrossRefGoogle ScholarPubMed
Aruoma, O.I., Halliwell, B., Hoey, B.M., Butter, J., The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid, Free Rad. Bio. Med. 6 (1989) 593597.CrossRefGoogle ScholarPubMed
Usoh, I., Akpan, E., Etim, E., Farombi, E., Antioxidant action of dried flower extracts of Hibiscus sabdariffa L. on sodium arseite- induced oxidative stress rats, Pak. J. Nutr. 4 (2005) 135141.Google Scholar
Dennis, W.H., Olivieri, V.P., Krusé, C.W., The reaction of nucleotides with aqueous hypochlorous acid, Water Res. 13 (2003) 357362.CrossRefGoogle Scholar
Carr, A.C., Vissers, M.C., Domigan, N.M., Winterbourn, C.C, Modification of red cell membrane lipids by hypochlorous and haemolysis by preformed lipid chlorohydrins, Redox Rep. 3 (1997) 263271.CrossRefGoogle ScholarPubMed