Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T07:08:19.106Z Has data issue: false hasContentIssue false

The Aedes aegypti genome: complexity and organization

Published online by Cambridge University Press:  14 April 2009

Ann M. Warren
Affiliation:
Wolfson Unit of Molecular Genetics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
Julian M. Crampton*
Affiliation:
Wolfson Unit of Molecular Genetics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the use of DNA reassociation kinetics to determine the total genome size and complexity together with the individual complexity and copy number of the single copy, middle repetitive and highly repeated DNA fractions of cell line and larval DNA from the mosquito, Aedes aegypti. The genome of Ae. aegypti is both large and complex, being one third the size of the human genome, and exhibits a short period interspersed repeat pattern. The implications of patterns of sequence arrangement and genome complexities for experiments aimed at isolating specific classes of DNA sequences, such as mobile genetic elements, are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Black, W. C. & Rai, K. S. (1988). Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization. Genetical Research 51, 185.CrossRefGoogle ScholarPubMed
Bingham, P. M.Levis, R. & Rubin, G. M. (1981). Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25, 693704.CrossRefGoogle ScholarPubMed
Britten, R. J. & Kohne, D. E. (1968). Repeated sequences in DNA. Science 161, 529540.CrossRefGoogle ScholarPubMed
Britten, R. J.Graham, D. E.Eden, F. C.Painchaud, D. M. & Davidson, E. N. (1976). Analysis of repeating DNA sequences by reassociation. Journal of Molecular Evolution 9, 123.CrossRefGoogle Scholar
Clarke, L. & Carbon, J. (1976). A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9, 9196.CrossRefGoogle Scholar
Coen, E. S.Today, J. M. & Dover, G. (1982). Rate of turnover of variants in the rDNA gene of D. melanogaster. Nature 295, 564568.CrossRefGoogle Scholar
Crain, W. R.Eden, R. CPearson, W. R.Davidson, E. H. & Britten, R. J. (1976). Absence of short period interspersion of repetitive and non-repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma 56, 309326.CrossRefGoogle ScholarPubMed
Davidson, E. H.Hough, B. R.Amenson, C. S. & Britten, R. J. (1973). General interspersion of repetitive with nonrepetitive sequence elements in the DNA of Xenopus. Journal of Molecular Biology 77, 123.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (1985). Transposable elements in eukaryotes. International Review of Cytology 93, 281326.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (1988). I-factors in Drosophila melanogaster and similar elements in other eukaryotes. SGM Symposium 43 (ed. Kingsman, A. J., Chatev, K. J. and Kingsman, S. M.), ‘Transposition’, pp. 271285. Cambridge University Press.Google Scholar
Freshney, R. I. (ed.) (1986). Introduction: principles of sterile technique and cell propagation. In Animal Cell Culture, A Practical Approach, pp. 111. Oxford and Washington, DC, IRL Press.Google Scholar
Gale, K. R. (1987). Characterization of the mosquito, Aedes aegypti at the molecular level of genetics. Ph.D. thesis, University of Liverpool.Google Scholar
Gale, K. R. & Crampton, J. M. (1989). The ribosomal genes of the mosquito Aedes aegypti. European Journal of Biochemistry 185, 311317.CrossRefGoogle ScholarPubMed
Green, S.Field, J. K.Green, C. D. & Beynon, R. J. (1982). A microcomputer program for analysis of nucleic acid hybridization data. Nucleic Acids Research 10, 14111421.CrossRefGoogle ScholarPubMed
Jelinek, W. R. & Schmid, C. W. (1982). Repetitive sequences in eukaryotic DNA and their expression. Annual Review of Biochemistry 51, 813844.CrossRefGoogle ScholarPubMed
Munstermann, L. E. & Craig, G. B. Jr. (1979). Genetics of Aedes aegypti; updating the linkage map. Journal of Heredity 70, 291296.CrossRefGoogle Scholar
Paskewitz, S. M. & Collins, F. H. (1989). Site-specific ribosomal DNA insertion elements in Anopheles gambiae and A. arabiensis: nucleotide sequence of gene-element boundaries. Nucleic Acids Research 17, 81258133.CrossRefGoogle Scholar
Potter, S. S.Brorien, W. J.Dunsmuir, P. & Rubin, G. M. (1979). Transposition of elements of the 412, copia and 297 dispersed repeated families in Drosophila. Cell 17, 429439.CrossRefGoogle ScholarPubMed
Rigby, P. W. J.Deickmann, M.Rhodes, C. & Berg, P. (1977). Ubiquitous, interspersed repeated sequences in mammalian genomes. Journal of Molecular Biology 113, 237251.CrossRefGoogle Scholar
Rothnie, H. M.McCurrach, K. J.Glover, L. A. & Hardman, N. (1991). Retrotransposon-like nature of Tpl elements: implications for the organization of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum. Nucleic Acids Research 19, 279286.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences in among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Spradling, A.Penman, S.Campo, M. S. & Bishop, J. O. (1974). Repetitious and unique sequences in the heterogenous nuclear and cytoplasmic messenger RNA of mammalian and insect cells. Cell 3, 32–30.CrossRefGoogle ScholarPubMed
Varma, M. G. R. & Pudney, M. (1969). The growth and serial passage of cell lines from A. aegypti (L) larvae in different media. Journal of Medical Entomology 6, 432439.CrossRefGoogle ScholarPubMed
Weiner, A. M.Deininger, P. L. & Efstratiadis, A. (1986). Nonviral retroposons: genes, pseudogenes and transposable elements generated by the reverse flow of genetic information. Annual Review of Biochemistry. 55, 631661.CrossRefGoogle ScholarPubMed
Young, M. W. & Schwartz, H. E. (1981). Nomadic gene families in Drosophila. Cold Spring Harbour Symposia on Quantitation Biology 45, 629640.CrossRefGoogle ScholarPubMed
Yuki, S.Ishimaru, S.Iuouye, S. & Saigo, K. (1986). Identification of genes for reverse transcriptase-like enzymes in two Drosophila retrotransposons, 412 and gypsy; a rapid detection method of reverse transcriptase genes using YXDD box probes. Nucleic Acids Research 14, 30173029.CrossRefGoogle ScholarPubMed