Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T10:27:19.911Z Has data issue: false hasContentIssue false

Cellular autonomy of hyperactivity in segmental X chromosomal aneuploids of Drosophila and dosage compensation

Published online by Cambridge University Press:  14 April 2009

Jayashree Prasad-Sinha
Affiliation:
Genetics Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India
A. S. Mukherjee
Affiliation:
Genetics Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transcription in 9A–11A aneuploid mosaic female larvae of Drosophila melanogaster has been assessed autoradiographically. Eleven larvae were found to exhibit mosaicism out of sixty-six larvae scanned and the percentage of XO and XX nuclei varied from approximately 9 to 100. Irrespective of the number of XX nuclei present the XO nuclei (duplicated for 9A–11A) invariably showed hyperactivity for both the segments. The XX nucleus exhibited a dosage effect for all the three segments of 9A–11A. Results support the transcriptional constancy of the entire X chromosome, as proposed by Maroni and Lucchesi. Cellular autonomy of hyperactivity of the single X chromosome even at the level of segments of the X is thus evident from the present results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Belote, J. M. & Lucchesi, J. C. (1980 a). Male specific lethal mutations of Drosophila melanogaster. Genetics 94, 165186.CrossRefGoogle Scholar
Belote, J. M. & Lucchesi, J. C. (1980 b). Control of X chromosome transcription by the maleless gene in Drosophila. Nature 285, 573575.CrossRefGoogle ScholarPubMed
Chatterjee, R. N. & Mukherjee, A. S. (1977). Chromosomal basis of dosage compensation in Drosophila. IX. Cellular autonomy of the faster replication of the X chromosome in haplo X cells of Drosophila melanogaster and synchronous initiation. Journal of Cell Biology 74, 168180.CrossRefGoogle ScholarPubMed
Cline, T. W. (1978). Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics 90, 683698.CrossRefGoogle ScholarPubMed
Cline, T. W. (1979 a). A product of the maternally-influenced sex lethal gene determines sex in Drosophila melanogaster. Genetics 91, 522.Google Scholar
Cline, T. W. (1979 b). A male-specific lethal mutation in Drosophila melanogaster that transforms sex. Developmental Biology 72, 266275.CrossRefGoogle ScholarPubMed
Cline, T. W. (1983). The interaction between daughterless and sex-lethal in Triploids: a lethal sex-transforming maternal effect linking sex-determination and Dosage Compensation in Drosophila melanogaster. Developmental Biology 95, 260274.CrossRefGoogle ScholarPubMed
Das, M., Mutsuddi, D., Duttagupta, A. K. & Mukherjee, A. S. (1982). Segmental heterogeneity in replication and transcription of X 2 chromosome of Drosophila miranda and con-servativeness in the evolution pf dosage compensation. Chromosoma 87, 373388.CrossRefGoogle Scholar
Gadagkar, R., Nanjundiah, V., Joshi, N. V. & Sharat Chandra, H. (1981). Measurement of the ratio of the number of X chromosomes to sets of autosomes in Drosophila melanogaster. Current Science 50, 105107.Google Scholar
Gadagkar, R., Nanjundiah, V., Joshi, N. V. & Sharat Chandra, H. (1982). Dosage compensation and sex determination in Drosophila: Mechanism of measurement of the X/A ratio. Journal of Bioscience 4, 377390.CrossRefGoogle Scholar
Ghosh, M. & Mukherjee, A. S. (1983). Regulation of dosage compensation in Drosophila. XV. International Congress of Genetics, Abstract no. 178, p. 104.Google Scholar
Kazazian, H. H., Young, W. J. & Childs, B. (1965). X-linked 6-phosphogluconate dehydrogenase in Drosophila subunit association. Science 150, 16011602.CrossRefGoogle Scholar
Lakhotia, S. C. & Mukherjee, A. S. (1969). Chromosomal basis of dosage compensation in Drosophila. I. Cellular autonomy of hyperactivity of the male X chromosome in salivary glands and sex differentiation. Genetical Research 14, 137150.CrossRefGoogle ScholarPubMed
Lakhotia, S. C. & Mukherjee, A. S. (1970). Chromosomal basis of dosage compensation in Drosophila. III. Early completion of replication by the polytene X chromosome in male: further evidence and its implications. Journal of Cell Biology 47, 1833.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute Washington, publication no. 627.Google Scholar
Lucchesi, J. C. (1973). Dosage compensation in Drosophila. Annual Review of Genetics 7, 225237.CrossRefGoogle ScholarPubMed
Lucchesi, J. C. (1977). Dosage compensation: Transcription level regulation of X-linked genes in Drosophila. American Zoologist 17, 685693.CrossRefGoogle Scholar
Lucchesi, J. C. & Skripsky, T. (1981). The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma 82, 217227.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X chromosome of the mouse (Mus musculus L.). Nature 190, 372373.CrossRefGoogle ScholarPubMed
Maroni, G. & Lucchesi, J. C. (1980). X chromosome transcription in Drosophila. Chromosoma (Berl.) 77, 253261.CrossRefGoogle ScholarPubMed
Maroni, G. & Plaut, W. (1973). Dosage compensation in Drosophila melanogaster triploids. II. Glucose-6-phosphate dehydrogenase activity. Genetics 74, 331334.CrossRefGoogle ScholarPubMed
Mukherjee, A. S. (1982). Dosage compensation as a model system for genetic regulation in eukaryotes. Current Science 51, 205212.Google Scholar
Mukherjee, A. S. & Beerman, W. (1965). Synthesis of ribonucleic acid by the X chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature 207, 785786.CrossRefGoogle ScholarPubMed
Mukherjee, A. S. & Ghosh, M. (1985). Enhanced hyperactivity of the X chromosome in In(1)BM2 (RV) strain of Drosophila melanogaster and evidence for the existence of controlling elements in the X (Submitted.)Google Scholar
Mutsuddi, M., Mutsuddi, D., Mukherjee, A. S. & Duttagupta, A. K. (1984). Conserved autonomy of replication of the X chromosomes in hybrids of Drosophila miranda and Drosophila persimilis. Chromosoma 89, 5562.CrossRefGoogle Scholar
Prasad, J., Duttagupta, A. K. & Mukherjee, A. S. (1981). Transcription in X chromosomal segmental aneuploids of Drosophila melanogaster and regulation of dosage compensation. Genetical Research 38, 103113.CrossRefGoogle Scholar
Skripsky, T., Lucchesi, J. C. (1980). Females with sex-combs. Genetics 94, 598.Google Scholar
Stewart, B. R. & Merriam, J. R. (1975). Regulation of gene activity by dosage compensation at the chromosomal level in Drosophila. Genetics 79, 635647.CrossRefGoogle ScholarPubMed
Stewart, B. R. & Merriam, J. R. (1980). Dosage compensation. In The genetics and biology of Drosophila, vol. 2d (ed. Ashburner, M. and Wright, T. R. F.), pp. 107140. Academic Press.Google Scholar
Strobel, E., Pelling, C. & Arnheim, N. (1978). Incomplete dosage compensation in an evolving sex chromosome. Proceedings of National Academy of Science, U.S.A. 75, 931935.CrossRefGoogle Scholar