Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T04:08:31.992Z Has data issue: false hasContentIssue false

A deleted hobo element is involved in the unstable thermosensitive vgal mutation at the vestigial locus in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

C. Bazin*
Affiliation:
Université Paris 7, Institut J. Monod, LGQM Tour 42–32 5éme étage, 2 place Jussieu, 75005 Paris, France
J. Williams
Affiliation:
Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53700USA
J. Bell
Affiliation:
Department of Genetics, University of Alberta, Edmonton, Alberta, Canada T6G-2E9
J. Silber
Affiliation:
Université Paris 7, Institut J. Monod, LGQM Tour 42–32 5éme étage, 2 place Jussieu, 75005 Paris, France
*
*Corresponding author, CNRS, laboratoire de Biologie et Génétiques Evolutives, 91198 Gif-sur-Yvette Cedex, France.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have described a new unstable mutant of the vestigial locus isolated from a natural population. From this mutant, vestigialalmost (vgal), wild-type (vgal+), and extreme (vgext), alleles arose spontaneously. The molecular analysis of vgal shows that the mutation is due to a 1874 bp hobo element inserted in a vestigial intron. Two distinct kinds of events lead a wild-type phenotype. Three independent vgal+ alleles result from an excision of the hobo element and two other vgal+ alleles have further deletions of hobo sequence. The sequence of one of them shows a 1516 bp hobo insertion at the same place and in the same orientation as the 1874 bp insertion. In the vgext alleles, we found a 5′ or 3′ variably sized deletion of vg sequences. One of them, which has been cloned and sequenced, has a deletion finishing exactly at the left terminal repeat′ hobo element. The genetic implications of these different genetic structures are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

Alexandrov, I. D. & Alexandrova, M. V. (1987). A new nw allele and interallelic complementation at the vg locus of Drosophila melanogaster. Drosophila Information Service 66, 1112.Google Scholar
Bazin, C., Lemeunier, F., Periquet, G. & Silber, J. (1991). Genetic analysis of vgal: a spontaneous and unstable mutation at the vestigial locus in Drosophila melanogaster. Genetical Research 57, 235243.CrossRefGoogle Scholar
Blackman, R. K., Grimaila, R., Koehler, M. M. D. & Gelbart, W. M. (1987). Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.CrossRefGoogle ScholarPubMed
Blackman, R. K. & Gelbart, W. M. (1989). The transposable element hobo of Drosophila melanogaster. In Mobile DNA (ed. Berg, D. E. and Howe, M.M.), pp. 523531. Washington, DC.: American Society for Microbiology Publications.Google Scholar
Blackman, R. K., Koehler, M. M. D., Grimaila, R. & Gelbart, W. M. (1989). Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EM BO Journals, 211217.Google ScholarPubMed
Calvi, B. R., Hong, T. J., Findley, S. D. & Gelbart, W. M. (1991). Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator and Tam3. Cell 66, 465471.CrossRefGoogle ScholarPubMed
Chen, E. Y. & Seeberg, P. H. (1985). Laboratory methods -supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4, 165170.CrossRefGoogle Scholar
Fristrom, D. (1968). Cellular degeneration in wing development of the vestigial mutant in D. melanogaster. Journal of Cell Biology 39, 488491.CrossRefGoogle Scholar
Hoopes, B. C. & McClure, W. R. (1981). Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Research 9, 54935505.CrossRefGoogle ScholarPubMed
Ish-Horowicz, D., Pinchin, S. M., Schedl, P., Artavanistsakonas, S. & Mirault, M. (1979). Genetic and molecular analysis of the 87A7 and 87C7 heat-inducible loci of D. melanogaster. Cell 18, 13511358.CrossRefGoogle ScholarPubMed
Lim, J. K. (1988). Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proceedings of the national Academy of Sciences, USA 85, 91539157.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Zimm, G. G. (1992). The Genome of Drosophila melanogaster. San Diego: Academic Press Harcourt Brace Jovanovich.Google Scholar
Louis, C. & Yannopoulos, G. (1988). The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster. Oxford Surveys of Eucarystic Genes 5, 205250.Google ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
Streck, R. D., MacGaffey, J. E. & Beckendorf, S. K. (1986). The structure of hobo transposable elements and their site of insertion. EMBO Journal 5, 36153623.CrossRefGoogle Scholar
Williams, J. A. & Bell, J. B. (1988). Molecular organization of the vestigial region in Drosophila melanogaster. EMBO Journals, 13551363.Google ScholarPubMed
Williams, J. A., Atkin, A. L. & Bell, J. B. (1990). The functional organization of the vestigial locus in Drosophila melanogaster. Molecular and General Genetics 221, 816CrossRefGoogle ScholarPubMed
Williams, J. A., Bell, J. B., Caroll, S. B. (1991). Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes and Development 5, 24812495.CrossRefGoogle ScholarPubMed
Yannopoulos, G., Stamatis, N., Monastirioti, M. & Louis, C. (1987). hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49, 487–195.CrossRefGoogle Scholar