Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T19:26:03.989Z Has data issue: false hasContentIssue false

Inactivation of whole chromosomes in mammals and coccids: some comparisons*

Published online by Cambridge University Press:  14 April 2009

H. Sharat Chandra
Affiliation:
Institute for Genetic Studies, Bangalore 27, India
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genetic systems involving developmental inactivation of entire chromosomes occur in two widely different groups of organisms: mammals and coccids (Homoptera: Insecta). The two groups show several similarities and some interesting contrasts with respect to this unusual cytogenetic phenomenon. Although mammalian X chromosomes and coccid paternal sets are components of different genetic systems, comparisons between them nevertheless suggest approaches that might prove to be of value. Further, the occurrence of facultative heterochromatization in these two wholly unrelated taxa must mean that this type of heterochromatization represents a fundamental capacity of chromosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Berlowitz, L., Loewus, M. W. & Pallotta, D. (1968). Heterochromatin and genetic activity in mealybugs. I. Compensation for inactive chromatin by increase in cell number. Genetics 60, 9399.CrossRefGoogle Scholar
Boue', J. G., Boue', A. & Lazar, P. (1967). Les aberrations chromosomiques dans les avortments. Annales de Génétique 10, 179187.Google Scholar
Bregman, A. A. (1968). The development of the serosa in male embryos of the mealybug, Pseudococcus obscurus Essig. Journal of Experimental Zoology 169, 173196.CrossRefGoogle Scholar
Brewer, G. J., Gall, J. C., Honeyman, M., Gershowitz, H., Shreffler, D. C., Dern, R. J. & Hames, C. (1967). Inheritance of quantitative expression of erythrocyte glucose-6-phosphate dehydrogenase activity in the Negro - a twin study. Biochemical Genetics 1, 4153.CrossRefGoogle Scholar
Brown, S. W. (1966). Heterochromatin. Science, N. Y. 151, 417425.CrossRefGoogle ScholarPubMed
Brown, S. W. (1969). Developmental control of heterochromatization in coccids. Genetics 61, 191198.Google ScholarPubMed
Brown, S. W. & Nelson-Rees, W. A. (1961). Radiation analysis of a lecanoid genetic system. Genetics 46, 9831007.CrossRefGoogle ScholarPubMed
Brown, S. W. & Nur, U. (1964). Heterochromatic chromosomes in the coccids. Science 145, 130136.CrossRefGoogle ScholarPubMed
Caspersson, L., Zech, L., Modest, E. J., Foley, G. E., Wage, U. & Simonsson, U. (1969). DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Experimental Cell Research 58, 141152.CrossRefGoogle Scholar
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of auto-somal genes attached to the X-chromosome. Zeitschrift für Vererbungslehre 96, 313323.Google Scholar
Chandra, H. S. (1962). Inverse meiosis in triploid females of the mealybug, Planococcus citri. Genetics 47, 14411454.CrossRefGoogle Scholar
Chandra, H. S. (1963). Cytogenetic studies following high dosage paternal irradiation in the mealybug, Planococcus citri. II. Cytology of X 1 females and the problem of lecanoid sex determination Chromosoma 14, 330346.CrossRefGoogle Scholar
Chandra, H. S. (1970). On X inactivation in XO embryos of mammals. Genetical Research 16, 233234.CrossRefGoogle ScholarPubMed
Corneo, G., Ginelli, E. & Bernardi, G. (1968). Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry 7, 43734379.CrossRefGoogle ScholarPubMed
Crawfurd, M. D'. A. (1961). Chromosomal mosaicism in a case of Klinefelter's syndrome associated with thalassaemia. Annals of Human Genetics 25, 153158.CrossRefGoogle Scholar
Fraccaro, M. & Lindsten, J. (1964). The nature, origin, and genetic implications of structural abnormalities of the sex chromosomes in man. Cytogenetics of cells in Culture (ed. Harris, R. J. C.), pp. 97110. Academic Press.Google Scholar
George, K. P. (1970). Cytochemical differentiation along human chromosomes. Nature 226, 8081.CrossRefGoogle ScholarPubMed
Grouchy, J. De., Lamy, M., Yaneva, H., Salmon, Y. & Netter, A. (1961). Further abnormalities of the y chromosome in primary amenorrhea or in severe oligomenorrhoea. Lancet ii, 777778.CrossRefGoogle Scholar
Hamerton, J. L. (1968). Significance of sex chromosome derived heterochromatin in mammals. Nature 219, 910914.CrossRefGoogle ScholarPubMed
Huang, C. C. (1970). Asynchronous DNA synthesis in the mycetocytes and in the spermatocytes of the mealybug, Pseudococcus obscurus (Homoptera: Coccoidea): a study with tritiated thymidine autoradiography. Ph.D. Thesis, University of Rochester, New York.Google Scholar
Hughes-Schrader, S. (1948). Cytology of coccids (Coccoidea-Homoptera). Advances in Genetics 2, 127203.CrossRefGoogle Scholar
Hughes-Schrader, S. & Ris, H. (1941). The diffuse spindle attachment of coccids, verified by the mitotic behaviour of induced chromosome fragments. Journal of Experimental Zoology 87, 429456.CrossRefGoogle Scholar
Jones, K. W. (1970). Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature 225, 912915.CrossRefGoogle ScholarPubMed
Kitchin, R. M. (1970). A radiation analysis of a Comstockiella chromosome system:destruction of heterochromatic chromosomes during spermatogenesis in Parlatoria oleae (Cocco-idea:Diaspididae). Chromosoma 31, 165197.CrossRefGoogle ScholarPubMed
London, D. R., Kemp, N. H., Eilis, J. R. & Mittwoch, U. (1964). Turner's syndrome with secondary amenorrhea and sex chromosome mosaicism. Acta Endocrinologia, Copenhagen 46, 341351.Google ScholarPubMed
Loewus, M. W., Brown, S. W. & Mclaren, A. D. (1964). Base ratios in DNA in male and female Pseudococcus citri. Nature 203, 104.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1963). Lyonisation of the X-chromosome. Lancet ii, 11201121.CrossRefGoogle Scholar
Lyon, M. F. (1968). Chromosomal and sub-chromosomal inactivation. Annual Review of Genetics, pp. 3182.CrossRefGoogle Scholar
Miles, C. P., Luzzati, L., Storey, S. D. & Peterson, C. D. (1962). A male pseudohermaphrodite with a probable XO/XxY mosaicism. Lancet ii, 455.CrossRefGoogle Scholar
Mittwoch, U. (1969). Do genes determine sex? Nature 221, 466–448CrossRefGoogle ScholarPubMed
Mittwoch, U., Atkin, N. B. & Ellis, J. R. (1963). Barr bodies in triploid cells. Cytogenetics 2, 323330.CrossRefGoogle ScholarPubMed
Morishima, A., Grumbach, M. M. & Taylor, J. H. (1962). Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proceedings of the National Academy of Sciences (U.S.A.) 48, 756763.CrossRefGoogle ScholarPubMed
Nielsen, J. (1966). Klinefelter's syndrome with a presumptive deleted X chromosome. Journal of Medical Genetice 3, 139141.CrossRefGoogle ScholarPubMed
Nur, U. (1963). Meiotic parthenogenesis and heterochromatization in a soft scale, Pulvinarla hydrangeae (Coccoidea:Homoptera). Chromosoma 14, 123139.CrossRefGoogle Scholar
Nur, U. (1967). Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealybug. Genetics 56, 375385.CrossRefGoogle Scholar
Nur, U. (1970). Translocations between eu- and heterochromatic chromosomes, and sperm-atocytes lacking a heterochromatic set in male mealybugs. Chromosoma 29, 4261.CrossRefGoogle Scholar
Nur, U. & Chandra, H. S. (1963). Interspecific hybridization and gynogenesis in mealybugs. American Naturalist 97, 197202.CrossRefGoogle Scholar
Ohno, S. (1969). Evolution of sex chromosomes in mammals. Annual Review of Genetics 3, 495524.CrossRefGoogle Scholar
Ohno, S., Kaplan, W. D. & Kinosita, R. (1961). X-chromosome behavior in germ and somatic cells of Rattus norvegicus. Experimental Cell Research 22, 535544.CrossRefGoogle ScholarPubMed
Pallotta, D., Berlowitz, L. & Rodriguez, L. (1970). Histones of genetically active and inactive chromatin. Experimental Cell Research 60, 474477.CrossRefGoogle ScholarPubMed
Pardue, M. L. & Gall, J. G. (1970). Chromosomal localization of mouse satellite DNA. Science 168, 13561358.CrossRefGoogle ScholarPubMed
Pearson, P. L., Bobrow, M. & Vosa, C. G. (1970). Technique for identifying Y chromosomes in human interphase nuclei. Nature 226, 7880.CrossRefGoogle ScholarPubMed
Penrose, L. S. (1967). Finger print patterns and the sex chromosomes. Lancet i, 298300.CrossRefGoogle Scholar
Polani, P. E., Angell, R., Giannelli, F., De La Chapelle, A., Race, R. R. & Sanger, R. (1970). Evidence that the Xg locus is inactivated in structurally abnormal X chromosomes. Nature 227, 613616.CrossRefGoogle ScholarPubMed
Rae, P. M. M. (1970). Chromosomal distribution of rapidly reannealing DNA in Drosophila melanogaster. Proceedings of the U.S. National Academy of Sciences 67, 10181025.CrossRefGoogle ScholarPubMed
Russell, L. B. (1961). The genetics of mammalian sex chromosomes. Science 133, 17951803.CrossRefGoogle ScholarPubMed
Russell, L. B. (1963). Mammalian X-chromosome action: Inactivation limited in spread and in region of origin. Science 140, 976978.CrossRefGoogle ScholarPubMed
Russell, L. B. & Montgomery, C. S. (1969). Comparative studies on X-autosome translocations in the mouse. I. Origin, viability, fertility, and weight of five T(X; l)'s. Genetics 63, 103120.CrossRefGoogle Scholar
Sabour, M. (1970). Nucleic acid and protein synthesis during early embryogenesis of a mealybug, Pseudococcus obscurus Essig (Homoptera: Coccoidea). Ph.D. thesis, University of California, Berkeley.Google Scholar
Schindler, A. M. & Mikamo, K. (1970). Triploidy in man. Report of a case and discussion on etiology. Cytogenetics 9, 116130.CrossRefGoogle ScholarPubMed
Schmid, W. & Vischer, D. (1967). A malformed boy with double aneuploidy and diploid-triploid mosaicism 48, XXYY/71, XXXYY. Cytogenetics 6, 145155.CrossRefGoogle ScholarPubMed
Schultz, J. (1965). Genes, differentiation and animal development. Brookhaven Symposia in Biology 18, 116147.Google ScholarPubMed
Steele, M. W. (1970). Incomplete dosage compensation for glucose-6-phosphate dehydro-genase in human embryos and newborns. Nature 227, 496498.CrossRefGoogle Scholar
Southern, E. M. (1970). Base sequence and evolution of guinea-pig Υ satellite DNA. Nature 227, 794798.CrossRefGoogle Scholar
Sutton, H. E. (1965). Biochemical genetics and man: accomplishments and prospects. Science 150, 858862.CrossRefGoogle Scholar
Valencia, J. I., Sonnenschein, C., Bur, G. & Lozzio, C. B. De (1964). A new type of chromosome mosaicism related to the Klinefelter's syndrome. Lancet i, 143144.CrossRefGoogle Scholar
Walker, P. M. B. (1968). How different are the DNAs from related animals? Nature 219, 228232.CrossRefGoogle ScholarPubMed