Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T08:51:51.408Z Has data issue: false hasContentIssue false

The liver/erythrocyte pyruvate kinase gene complex [Pk-1] in the mouse: structural gene mutations

Published online by Cambridge University Press:  14 April 2009

Lesley A. Fitton
Affiliation:
Gene Expression Group, AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian EH25 9PS, U.K.
Grahame Bulfield*
Affiliation:
Gene Expression Group, AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian EH25 9PS, U.K.
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nine enzyme activity variants of liver/erythrocyte pyruvate kinase have been found amongst laboratory and wild mice. Four of these variants have been shown by biochemical and immunological criteria to be mutations of the structural gene, Pk-1s. These four structural gene mutations, and two regulatory gene mutations, define the gene complex, [Pk-1]. One allele of the structural gene, Pk-1sl, found in the inbred strain C57BL, has an unusual phenotype and affects the expression of pyruvate kinase in the liver but not erythrocyte. A possible mechanism for this tissue-specific structural gene mutation is suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V. M., Moriwaki, K., Nevo, E. & Thaler, L. (1984). Biochemical diversity and evolution in the genes Mus. Biochemical Genetics 22, 275303.CrossRefGoogle ScholarPubMed
Bulfield, G., Hall, J. M. & Tsakas, S. (1984). Incidence of inherited enzyme activity variants in feral mouse populations. Biochemical Genetics 22, 133138.CrossRefGoogle ScholarPubMed
Bulfield, G. & Moore, E. A. (1974). Semi-automated assays for enzymopathies of carbohydrate metabolism in liver and erythrocytes using a reaction rate analyser. Clinica Chemica Acta 53, 265271.CrossRefGoogle ScholarPubMed
Bulfield, G., Moore, E. A. & Kacser, H. (1978). Genetic variation in activity of the enzymes of glycolysis and gluconeogenesis between inbred strains of mice. Genetics 89, 551561.CrossRefGoogle ScholarPubMed
Charles, D. J. & Pretsch, W. (1984). A new pyruvate kinase mutation with hyperactivity in the mouse. Biochemical Genetics 22, 743750.CrossRefGoogle ScholarPubMed
Charles, D. J. & Pretsch, W. (1987). Liner dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitroso-urea-treated mice. Mutation Research 176, 8191.CrossRefGoogle Scholar
Goding, J. W. (1978). Conjugation of antibodies with fluorochrome modifications to the standard methods. Journal of Immunological Methods 13, 215226.CrossRefGoogle Scholar
Harada, K., Saheki, S., Wada, K. & Tanaka, T. (1978). Purification of four pyruvate kinase isozymes of rats by affinity chromatography. Biochimica et Biophysica Acta 524, 327339.CrossRefGoogle Scholar
Imamura, K. & Tanaka, T. (1972). Multi-molecular forms of pyruvate kinase from rat and other mammalian tissues. 1. Electrophoretic studies. Journal of Biochemistry 71, 10431051.CrossRefGoogle Scholar
Inoue, H., Noguchi, T. & Tanaka, T. (1986). Complete amino acid sequence of the rat L-type pyruvate kinase deduced from the cDNA sequence. European Journal of Biochemistry 154, 465469.CrossRefGoogle ScholarPubMed
Johnson, F. M., Chasalow, F., Anderson, G., MacDougal, P., Hendnen, R. W. & Lewis, S. E. (1981). A variant in mouse kidney pyruvate kinase activity determined by a mutant gene on chromosome 9. Genetical Research 37, 123131.CrossRefGoogle Scholar
Lone, Y.-C., Simon, M.-P., Kahn, A. & Marie, J. (1986). Complete nucleotide and deduced amino acid sequences of the rat L-type pyruvate kinase. FEBS letters 195, 97100.CrossRefGoogle ScholarPubMed
Marie, J., Kahn, A. & Boivin, P. (1976). Pyruvate kinase isozymes in man. 1. M type isozymes in adult and foetal tissues, electrofocusing and immunological studies Human Genetics 31, 3545.CrossRefGoogle ScholarPubMed
Marie, J., Simon, M.-P., Dreyfus, J.-C. & Kahn, A. (1981). One gene but two messenger RNAs encode liver L and red cell Li pyruvate kinase subunits. Nature 292, 7072.CrossRefGoogle Scholar
Moore, K. J. & Bulfield, G. (1981). An allele (Pk-1b) from wild-caught mice that effects the activity and kinetics of erythrocyte and liver pyruvate kinase. Biochemical Genetics 19, 771781.CrossRefGoogle Scholar
Noguchi, T., Inoue, H., Chen, H.-L., Matsubara, K. & Tanaka, T. (1983). Molecular cloning of DNA complementary to rat L-type pyruvate kinase on RNA. Nutritional and hormonal regulation of L-type pyruvate kinase mRNA concentration. Journal of Biological Chemistry 258, 1522015223.CrossRefGoogle ScholarPubMed
Noguchi, T., Inoue, H., Nakamura, Y., Chen, H.-L., Matsubara, K. & Tanaka, T. (1984). Molecular cloning of cDNA sequences for rat M2-type pyruvate kinase and regulation of its mRNA. Journal of Biological Chemistry 259, 26512655.CrossRefGoogle ScholarPubMed
Noguchi, T., Inoue, H. & Tanaka, T. (1986). The M1 and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. Journal of Biological Chemistry 261, 1380713812.CrossRefGoogle ScholarPubMed
Noguchi, T. & Tanaka, T. (1982). The M1 and M2 subunits of rat pyruvate kinase are encoded by different messenger RNAs. Journal of Biological Chemistry 257, 11101113.CrossRefGoogle ScholarPubMed
Peters, J. & Andrews, S. J. (1984). The Pk-3 gene determines both the heart, M1, and the kidney M2, pyruvate kinase isozymes in the mouse; and a simple electrophoretic method for separating phosphoglucomutase-3. Biochemical Genetics 22, 10471063.CrossRefGoogle Scholar
Peters, J., Nash, H. R., Eicher, E. M. & Bulfield, G. (1981). Polymorphism of kidney pyruvate kinase in the mouse is determined by a gene, Pk-3, on chromosome 9. Biochemical Genetics 19, 757769.CrossRefGoogle ScholarPubMed
Saheki, S., Harada, K., Sanno, Y. & Tanaka, T. (1978). Hybrid isozymes of rat pyruvate kinase. Their subunit structure and developmental changes in the liver. Biochimica et Biophysica Acta 526, 116128.CrossRefGoogle ScholarPubMed
Saheki, S., Saheki, K. & Tanaka, T. (1982). Peptide structures of pyruvate kinase isozymes 1. Comparison of the four pyruvate kinase isozymes of the rat. Biochimica et Biophysica Acta 704, 484493.CrossRefGoogle Scholar
Simon, M.-P., Besmond, , Cottreau, D., Weber, A., Chaumet-Riffaud, P., Dreyfus, J.-C., Thepat, J. S., Marie, J. & Kahn, A. (1983). Molecular cloning of cDNA rat L-type pyruvate kinase and aldolase B. Journal of Biological Chemistry 259, 17981802.Google Scholar
Simon, M.-P., Marie, J., Bertrand, O. & Kahn, A. (1982). Molecular organisation of the human Li and L pyruvate kinase. Biochimica et Biophysica Acta 709, 17.CrossRefGoogle Scholar
Taylor, B. A. (1978). Recombinant inbred strains: use in gene mapping. In Origins of Inbred Mice (ed. Morse, H. C.), pp. 423438. London: Academic Press.CrossRefGoogle Scholar