Article contents
A model of extranuclear genomes and the substitution rate under within-generation selection
Published online by Cambridge University Press: 14 April 2009
Summary
A single locus model of extranuclear genomes is developed under the assumption of the complete action of within-generation drift which is caused by random transmission of multiple copy genomes during cell division in a generation. Within-generation drift segregates different copy genomes in a cell into different cells, resulting in homoplasmic cells. Under some conditions, the present model reduces to that for haploid nuclear genomes. A point overlooked in previous models is that the multiplicity also admits of the possibility of selection occurring within a cell or between cells in an individual (within-generation selection). If there is selection mediated by, for instance, differential proliferation of genomes, then a haploid model no longer explains the dynamics of extranuclear genomes. Rather a model analogous to biased gene conversion at a single locus (Nagylaki, 1983; Walsh, 1983) is more appropriate. An application of this model to either the fixation probability or substitution rate of new mutations shows that strictly maternal inheritance does not allow the fullest use of mutations, as it obscures the effect of within-generation selection. But if there is appreciable paternal contribution, within-generation selection could be a strong evolutionary force to which nuclear genomes are never exposed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1984
References
REFERENCES
- 13
- Cited by