Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:46:22.387Z Has data issue: false hasContentIssue false

Non-mendelian female sterility in Drosophila melanogaster: variations of chromosomal contamination when caused by chromosomes of various inducer efficiencies

Published online by Cambridge University Press:  14 April 2009

Alain Pélisson
Affiliation:
Laboratoire de Génétique, Université de Clermont-Ferrand II, B.P. 45, 63170 Aubière, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A quite specific kind of sterile F1 female, called SF females, arises only when females of strains denoted reactive are crossed with males of the other class (inducer). It was previously shown that this sterility results from a nucleocytoplasmic interaction between the maternal reactive cytoplasm and a factor, called I, which may be born by any one of the paternal chromosomes. In SF females, but not in their brothers, a varying proportion of reactive chromosomes are able to acquire irreversibly the I factor, independently of any classical genetic recombination with the inducer chromosome(s). During this process, called chromosomal contamination, the contaminating chromosome(s) do not undergo any apparent change. The present paper deals with the efficiency of both original inducer and contaminated chromosomes to yield a more or less intense SF sterility. The Otanu inducer laboratory strain contains at least two types of X chromosomes (called strong and weak) which differ genetically with respect to their inducer efficiency. Reactive third chromosomes were contaminated by these strong or weak X chromosomes and their inducer efficiencies compared. Results show that they are on average stronger when they have been contaminated by strong X chromosomes than when contaminated by weak ones. Such a correlation favours the hypothesis that chromosomal contamination is due to the insertion of some genetic element(s) into reactive chromosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Bucheton, A. (1973). Contribution à l'étude de la stérilité femelle non mendélienne chez Drosophila melanogaster: transmission héréditairedes degrés d'efficacité du facteur ‘réacteur’. Comptes Rendus de l'Académie des Sciences de Paris D 276, 641644.Google Scholar
Bucheton, A., Lavige, J. M., Picard, G. & L'Héritier, Ph. (1976). Non mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36, 305314.CrossRefGoogle ScholarPubMed
Bucheton, A. & Picard, G. (1975). Mise en évidence d'une influence partiellement héritable de l'âge sur un phénomène de stérilité femelle à déterminisme non mendélien chez Drosophila melanogaster. Comptes Rendus de l'Académie des Sciences de Paris D 281, 10351038.Google Scholar
Bucheton, A. & Picard, G. (1978). Non mendelian female sterility in Drosophila melanogaster: hereditary transmission of reactivity levels. Heredity 40, 207223.Google Scholar
David, J. (1959). Etude quantitative du développement de la Drosophile élevée en milieu axénique. Bulletin de la Société Biologique de France et de Belgique 93, 472.Google Scholar
Fincham, J. R. S. & Sastry, G. R. K. (1974). Controlling elements in maize. Annual Review of Genetics 8, 1550.Google Scholar
Green, M. M. (1969). Controlling element mediated transpositions of the white gene in Drosophila melanogaster. Genetics 61, 429441.CrossRefGoogle Scholar
Ising, G. & Ramel, G. (1976). The behaviour of a transposing element in Drosophila Melanogaster: The Genetics and Biology of Drosophila, pp. 947954. London: Academic Press.Google Scholar
Kearsey, M. J., Williams, W. R., Allen, P. & Coulter, F. (1977). Polymorphism for chromosomes capable of inducing female sterility in Drosophila. Heredity 38, 109115.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Publications. Carnegie Institute of Washington, no. 627.Google Scholar
Nevers, P. & Saedler, H. (1977). Transposable genetic elements as agents of gene instability and chromosomal rearrangements. Nature 268, 109115.CrossRefGoogle ScholarPubMed
Pélisson, A. (1975). Contribution à l'étude de la stérilité femelle non mendélienne chez Drosophila melanogaster: efficacité inductrice de génomes à un ou plusieurs chromosomes inducteurs. Thèse de 3ème cycle. Université de Paris-Sud, Centre d'Orsay.Google Scholar
Pélisson, A. (1977). Contribution à l'étude d'une stérilité femelle non mendélienne chez Drosophila melanogaster: mise en évidence d'un chromosome 4 inducteur. Comptes Rendus de l'Académie des Sciences de Paris D 284, 23992402.Google Scholar
Picard, G. (1976). Non mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 83, 107123.Google Scholar
Picard, G. (1979). Non mendelian female sterility in Drosophila melanogaster: principal characteristics of chromosomes from inducer and reactive origin after chromosomal contamination. (In the Press.)Google Scholar
Picard, G., Bucheton, A., Lavige, J. M. & Fleuriet, A. (1972). Contribution à l'étude d'un phénomène de stérilité à déterminisme non mendélien chez Drosophila melanogaster. Comptes Rendus de l'Académie des Sciences de Paris D 275, 933936.Google ScholarPubMed
Picard, G., Bucheton, A., Lavige, J. M. & Pélisson, A. (1976). Répartition géographique des trois types de souches impliquées dans un phénomème de stérilité à déterminisme non mendelien chez Drosophila melanogaster. Comptes Rendus de l'Academie des Sciences de Paris D 282, 18131816.Google Scholar
Picard, G., Lavige, J. M., Bucheton, A. & Brégliano, J. C. (1977). Non mendelian female sterility in Drosophila melanogaster: physiological pattern of embryo lethality. Biologie cellulaire 29, 8998.Google Scholar
Picard, G. & Pélisson, A. (1979). Non mendelian female sterility in Drosophila melanogaster: characterization of the non inducer chromosomes of inducer strains. (In the Press.)Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar