Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T18:40:03.043Z Has data issue: false hasContentIssue false

Phosphatases of Coprinus lagopus: the conditions for their production and the genetics of the alkaline phosphatase

Published online by Cambridge University Press:  14 April 2009

Jane North
Affiliation:
Department of Botany and, Microriology, University College London
D. Lewis
Affiliation:
Department of Botany and, Microriology, University College London
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Coprinus lagopus produces two non-specific phosphatases: a constitutive acid phosphatase, and an alkaline phosphatase which is repressed during growth on media with a high inorganic phosphate concentration.

2. The alkaline phosphatase is also repressed when Coprinus is grown on an organic phosphate source; but if the acid phosphatase is selectively inhibited by fluoride the alkaline phosphatase is de-repressed and growth is comparable to that observed on an inorganic phosphate source.

3. Alkaline phosphatase is not repressed in aerial mycelium or sporophores even when grown on high phosphate medium.

4. Mutants altered in their capacity to synthesize alkaline phosphatase were selected from two compatible wild-type strains, H2 and H5.

5. Mutants producing a higher level of alkaline phosphatase than wild-type (‘regulator’ mutants) fall into four (or possibly five) complementation groups. Assuming five separate genes, two pairs are linked; the remaining one is independent and on another chromosome.

6. Mutants deficient in alkaline phosphatase synthesis fall into at least three groups. They were tested for linkage to ‘regulator’ loci but so far there is no evidence of this.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Anagnostopoulos, C. (1960). Alkaline phosphatase formation in Bacillus subtilis. Federation Proceedings 19, 48.Google Scholar
Borst-Pauwels, G. W. F. H. (1962). The uptake of radioactive phosphate by yeast. I. The uptake of inorganic phosphate by yeast as compared to that by higher plants. Biochimica et biophysica acta 65, 403.Google ScholarPubMed
Borst-Pauwels, G. W. F. H., Loef, W. H. & Havinga, E. (1962). The uptake of radioactive phosphate by yeast. II. The primary phosphorylation products. Biochimica et biophysica acta 65, 407.CrossRefGoogle ScholarPubMed
Casselton, L. A. (1965). The production and behaviour of diploids of Coprinus lagopus. Genetical Research 6, 190.CrossRefGoogle ScholarPubMed
Casselton, P. J., Fawole, M. O. & Casselton, L. A. (1969). Isocitrate lyase in Goprinus lagopus (sensu Buller). Canadian Journal of Biochemistry 15, 637.Google ScholarPubMed
Cove, D. J. (1969). Evidence for a near-limiting intracellular concentration of a regulator substance. Nature 224, 272.CrossRefGoogle ScholarPubMed
Davis, F. W. J. & Lees, H. (1969). Alkaline phosphatases of Neurospora crassa: I. Canadian Journal of Biochemistry 15, 455.Google ScholarPubMed
Delsal, J. L. & Manhuri, H. (1958). Etude des dosages colorimétriques du phosphore. Bulletin de la Société de chimie biologique 40, 1623.Google Scholar
Dorn, G. (1965). Genetic analysis of the phosphatases in Aspergillus nidulans. Genetical Research 6, 13.CrossRefGoogle ScholarPubMed
Dorn, G. & Rivera, W. (1966). Kinetics of fungal growth and phosphatase production in Aspergillus nidulans. Journal of Bacteriology 92, 1618.CrossRefGoogle Scholar
Garen, A. & Echols, H. (1962 a). Genetic control of the induction of alkaline phosphatase. synthesis in Escherichia coli. Proceedings of the National Academy of Sciences of the U.S. A. 48, 1398.CrossRefGoogle Scholar
Garen, A. & Echols, H. (1962 b). Properties of two regulator genes for alkaline phosphatase. Journal of Bacteriology 83, 297.CrossRefGoogle Scholar
Giri, K. V., Prasad, A. L. N., Gowri Devi, S. & Sri Ram, J. (1952). A technique for the identification and separation of enzymes by paper chromatography. Biochemical Journal 51, 123.CrossRefGoogle ScholarPubMed
Gooday, G. W. (1968). The localisation of some enzymes in the mycelium of Mucor haemalis. Archiv für Microbiologie 63, 11.CrossRefGoogle Scholar
Goodman, J. & Rothstein, A. (1957). The active transport of phosphate into the yeast cell. Journal of General Physiology 40, 915.CrossRefGoogle ScholarPubMed
Heredia, C. F., Yen, F. & Sols, A. (1963). The role and formation of the acid phosphatase in yeast. Biochemical and Biophysical Research Communications 10, 14.CrossRefGoogle ScholarPubMed
Hynes, M. J. & Pateman, J. A. J. (1970). The genetic analysis of the regulation of amidase synthesis in Aspergillus nidulans. I. Mutants arle to utilize acrylamide. Molecular and General Genetics 108, 97.CrossRefGoogle Scholar
Jones, T. C. & Gallant, J. A. (1964). The genetic control of basal levels of alkaline phosphatase. Genetics 50, 260.Google Scholar
Kritskii, M. S. & Kulaev, I. S. (1965). Translocation of phosphates in the sporophores of Agaricus bisporous. Biochemistry, USSR 30, 688.Google Scholar
Kulaev, I. S., Kritskii, M. S. & Belozerskii, A. N. (1960). The metarolism of polyphosphates and some other phosphorus compounds in the development of fruiting-bodies of Agaricus bisporous. Biochemistry, USSR 25, 563.Google Scholar
Kulaev, I. S. & Okarov, L. A. (1967). Primary stages in the entry of inorganic phosphate from the medium into the mycelium of Penicillium chrysogenum. Biochemistry, USSR 32, 571.Google Scholar
Kuo, M. H. & Blumental, H. J. (1961). Purification and properties of an acid phosphomonoesterase from Neurospora crassa. Biochimica et Biophysica Acta 52, 13.CrossRefGoogle ScholarPubMed
Kusnarev, V. M. & Smirnova, T. A. (1966). Electron microscopy of alkalaine phosphatase in Escherichia coli. Canadian Journal of Microbiology 12, 605.CrossRefGoogle Scholar
Le Hegarat, J.-C. & Anagnostopoulos, C. (1969). Localisation chromosomique d'un gene gouvernant la synthèse d'une phosphatase alcaline chez Bacillus subtilis. Comptes rendus des séances de l'Acadamie des Sciences (série D) 269, 2048.Google ScholarPubMed
Levinthal, C. F. (1959). Genetic and chemical studies with alkaline phosphatase of Escherichia coli. Brookhaven Symposia 12, 76.Google Scholar
Lewis, D. (1961). Genetical analysis of methionine supressors in Coprinus. Genetical Research 2, 141.CrossRefGoogle Scholar
Lewis, D. (1963). Structural gene for the methionine activating enzyme and its mutation as a cause of resistance to ethionine. Nature 200, 151.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265.CrossRefGoogle ScholarPubMed
Marzluf, G. A. (1970). Genetic and biochemical studies of distinct sulfate permease species in different development stages of Neurospora crassa. Archives of Biochemistry and Biophysics 138, 254.CrossRefGoogle Scholar
Matile, P. (1969). Vacuoles as lysozomes of plant cells. Biochemical Journal 111, 26p.CrossRefGoogle Scholar
Miki, T., Minami, Z. & Ikeda, Y. (1965). The genetics of alkaline phosphatase production in Bacillus subtilis. Genetics 52, 1093.CrossRefGoogle Scholar
Moore, D. (1967). Four new linkage groups in Coprinus lagopus. Genetical Research 9, 351.CrossRefGoogle ScholarPubMed
Neumann, H. & Van Vredendaal, M. (1967). An improved alkaline phosphatase determination with p-nitrophenyl phosphate. Clinica chimica acta 17, 183.CrossRefGoogle ScholarPubMed
Nyc, J. F. (1967). A repressible acid phosphate in Neurospora crassa. Biochemical and Biophysical Research Communications 27, 183.CrossRefGoogle Scholar
Nyc, J. F., Kadner, R. J. & Crocken, B. J. (1966). A repressible alkaline phosphatase in Neurospora crassa. Journal of Biological Chemistry 241, 1468.CrossRefGoogle ScholarPubMed
Takeda, K. & Tsugita, A. (1967). Phosphoesterases of Bacillus subtilis. II. Crystallisation and properties of the alkaline phosphatase. Journal of Biochemistry Tokyo 61, 231.CrossRefGoogle ScholarPubMed
Torriani, A. (1960). Influence of inorganic phosphate on the formation of phosphatases by Escherichia coli. Biochimica et biophysica acta 38, 460.CrossRefGoogle ScholarPubMed
Torriani, A. & Rothman, F. (1961). Mutants of Escherichia coli constitutive for alkaline phosphatase. Journal of Bacteriology 81, 835.CrossRefGoogle ScholarPubMed
Wiley, W. R. (1970). Tryptophan transport in Neurospora crassa: a tryptophan binding protein released by cold osmotic shock. Journal of Bacteriology 103, 656.CrossRefGoogle ScholarPubMed